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∗Chargé de Recherches FNRS (Belgium).
†Aspirant du FNRS (Belgium).

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep012006052/jhep012006052.pdf

mailto:bekaert@ihes.fr
mailto:nicolas.boulanger@umh.ac.be
mailto:sandrine.cnockaert@ulb.ac.be
http://jhep.sissa.it/stdsearch


J
H
E
P
0
1
(
2
0
0
6
)
0
5
2

Contents

1. Introduction 1

2. Free theory 3

3. Deformations of the free theory 5

3.1 Basic assumptions 5

3.2 Main results 6

4. BRST settings 8

4.1 BRST spectrum and differential 8

4.2 BRST deformation 10

4.3 Cohomology of γ 10

4.4 Invariant Poincaré lemma 12
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1. Introduction

Whereas gauge theories describing free massless fields of arbitrary high spin are by now

well established, it still remains unclear whether nontrivial consistent self-couplings and/or

cross-couplings among those fields may exist at the level of the action, such that the de-

formed gauge algebra is non-abelian. The old Fronsdal programme of introducing consistent

couplings among higher-spin gauge fields [1] is still far away from completion. Actually,
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there is a general belief that such interactions are forbidden, except perhaps when the

cosmological constant is nonvanishing, in which case encouraging results have been found

at the level of equations of motion (see e.g. [2, 3] and references therein).

The Fronsdal programme was initially investigated in two distinct directions: either

searching for consistent vertices for higher-spin gauge fields interacting with each other

but not with gravity, or attempting to couple consistently some given higher-spin gauge

field with gravity. On the one hand, the problem of consistent interactions among higher-

spin gauge fields in Minkowski spacetime R
n−1,1 was addressed in [4 – 15] where some

positive results have been obtained. In the light-cone gauge, three-point couplings between

completely symmetric1 gauge fields with arbitrary spins s > 2, were constructed in [5, 13,

15]. For the pure spin-3 case, a cubic vertex was obtained in a covariant form by Berends,

Burgers and van Dam [6]. These results describe consistent interactions at first order in

a deformation parameter g and involve higher-derivatives. However, no-go results soon

demonstrated the impossibility of extending these interactions to the next orders in powers

of g for the pure spin-3 case [7, 9, 10]. On the other hand, the first explicit attempts

to introduce interactions between higher-spin gauge fields and gravity encountered severe

problems [17].

Very early, the idea was proposed that a consistent higher-spin gauge theory could exist,

provided all spins are taken into account [1]. In order to overcome the gravitational coupling

problem, it was also suggested to perturb around a curved, conformally flat background,

like for example AdSn. In such a case, the cosmological constant Λ can be used to cancel the

positive mass dimensions appearing with the increasingly many derivatives of the vertices.

As the works of Fradkin, Vasiliev and others show, interesting results have indeed been

obtained in those directions, even at the level of the action [18].

If there is a lesson to learn from decades of efforts toward a consistent theory of

interacting higher-spin gauge fields, it certainly is the unusual character of the possible

interactions. For instance, the cubic vertices contain more than two derivatives.2

This, in turn, can be linked to the fact that the spin-s curvature is expressed via

s derivatives of the gauge field [19, 4]. Consequently, in order to investigate further the

possible local higher-spin consistent interactions, it is of prime importance to use as general

a tool as possible. A cohomological method is known [20], which offers all the generality one

could wish and clearly organizes the calculation of the nontrivial consistent couplings. In

this approach, the old Noether method (see for instance [9]) is reformulated in the BRST

framework where consistent couplings define deformations of the solution of the master

equation. This formulation has been used recently in different contexts (see e.g. [21 – 23]

and references therein).

In the present paper, we come back to the initial (and more modest) problem of

consistent interactions among higher-spin gauge fields in flat spacetime and concentrate

on the pure spin-3 case. The motivation behind our work is the existence of the new

method [20] developed in the meantime, which allows for an exhaustive treatment of the

1Light-cone cubic vertices involving mixed symmetry gauge fields were computed in dimensions n = 5, 6

[16].
2The full theory presented in [2] is even expected to be non-local.
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consistent interaction problem while, in the aforementioned works [5 – 11, 13 – 15], classes of

deformation candidates were rejected ab initio from the analysis for the sake of simplicity.

For example, spin-3 cubic vertices containing more than 3 derivatives were not considered in

the otherwise very general analysis of [6]. This ansatz was too restrictive since another cubic

vertex with five derivatives exists in dimensions higher than four (it is written explicitly

in Appendix B). Moreover, without fixing a priori the maximal number of derivatives, we

show that vertices deforming the gauge algebra must contain a total number of either three

or five derivatives.3

The paper is organized as follows. In section 2, we review the free theory of massless

spin-3 gauge fields represented by completely symmetric rank-3 tensors. Our principal

hypotheses are spelled out in section 3.1 and our main results are collected in Theorems

1 and 2 presented in section 3.2. The section 4 gathers together the main BRST results

needed for the exhaustive treatment of the interaction problem: The BRST spectrum

of the theory is presented in section 4.1. Some cohomological results have already been

obtained in [24], such as the cohomology H∗(γ) of the gauge differential γ and the so called

characteristic cohomology Hn
k (δ|d) in antighost number k > 2. We recall the content

of these groups in sections 4.3 and 4.5. The calculation of the invariant characteristic

cohomology Hn
k (δ|d,H(γ)) constitutes the core of the BRST analysis and is achieved in

section 4.6. The self-interaction question is answered in section 5. We give our conclusions

and discuss several directions for future research in section 6.

2. Free theory

The local action for a collection {ha
µνρ} of N non-interacting completely symmetric massless

spin-3 gauge fields in flat spacetime is [1]

S0[h
a
µνρ] =

N∑

a=1

∫
dnx

[
−

1

2
∂σha

µνρ∂
σhaµνρ +

3

2
∂µha

µρσ∂νh
aνρσ +

3

2
∂µha

ν∂µhaν +
3

4
∂µhaµ∂νh

aν − 3 ∂µha
ν∂ρh

aρµν

]
, (2.1)

where ha
µ := ηνρha

µνρ . The Latin indices are internal indices taking N values. They are

raised and lowered with the Kronecker delta’s δab and δab. The Greek indices are space-time

indices taking n values, which are lowered (resp. raised) with the “mostly plus” Minkowski

metric ηµν (resp. ηµν).

The action (2.1) is invariant under the gauge transformations

δλha
µνρ = 3 ∂(µλa

νρ) , ηµνλa
µν ≡ 0 , (2.2)

3This result is in agreement with the general upper bound k < s1 + s2 + s3 on the total number k of

derivatives in a cubic vertex containing completely symmetric fields of respective spin s1, s2 and s3 [15].
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where the gauge parameters λa
νρ are symmetric and traceless.4 Curved (resp. square)

brackets on spacetime indices denote strength-one complete symmetrization (resp. an-

tisymmetrization) of the indices. The gauge transformations (2.2) are abelian and irre-

ducible.

The field equations read

δS0

δha
µνρ

≡ Gµνρ
a = 0 , (2.3)

where

Ga
µνρ := F a

µνρ −
3

2
η(µνF a

ρ) (2.4)

is the “Einstein” tensor and F a
µνρ the Fronsdal (or “Ricci”) tensor

F a
µνρ := 2ha

µνρ − 3 ∂σ∂(µha
νρ)σ + 3 ∂(µ∂νh

a
ρ) . (2.5)

The Fronsdal tensor is gauge invariant thanks to the tracelessness of the gauge parameters.

Because we have δλS0[h
a
µνρ] = 0 for the gauge transformations (2.2), the Einstein tensor

Ga
µνρ satisfies the Noether identities

∂ρGa
µνρ −

1

n
ηµν∂ρGa

ρ ≡ 0 (Ga
ρ := ηµνGa

µνρ) (2.6)

related to the symmetries of the gauge parameters λa
µν ; in other words, the l.h.s. of (2.6)

is symmetric and traceless.

The gauge symmetries enable one to get rid of some components of ha
µνρ , leaving it

on-shell with Nn
3 independent physical components, where Nn

3 is the dimension of the irre-

ducible representation of the “little group” O(n−2) (n > 3) corresponding to a completely

symmetric rank 3 traceless tensor in dimension n − 2. One has Nn
3 = n3−3n2−4n+12

6 . Of

course, N4
3 = 2 for the two helicity states ±3 in dimension n = 4 . Note also that there is

no propagating physical degree of freedom in n = 3 since N3
3 = 0, so that we restrict our

present work to n > 3.

An important object is the curvature (or “Riemann”) tensor [19, 4, 28]

Ka
αµ|βν|γρ := 8∂[γ∂[β∂[αha

µ]ν]ρ] (2.7)

which is antisymmetric in αµ , βν , γρ and invariant under gauge transformations (2.2),

where the gauge parameters λa
µν are however not necessarily traceless.

Its importance, apart from gauge invariance with unconstrained gauge parameters,

stems from the fact that the field equations (2.3) are equivalent5 to the following equations

ηαβKa
αµ|βν|γρ = 0 . (2.8)

4Quadratic non-local actions [25] have been proposed in order to get rid of the trace constraint (2.2)

on the gauge parameter. Since locality is an important hypothesis of the present work, we do not discuss

the non-local formulation here. Notice that by introducing a pure gauge field (sometimes refered to as

“compensator”), it is possible to write a local (but higher-derivative) action for spin-3 [25] that is invariant

under unconstrained gauge transformations. Very recently, this action was generalized to the arbitrary

spin-s case by further adding an auxiliary field [26] (see also [27] for an older “non-minimal” version of it).
5As usual in field theory, we work in a space of smooth functions that vanish at infinity. In particular,

polynomials in xµ are forbidden.
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This was proved in the work [29] by combining various former results [28, 31, 25].

3. Deformations of the free theory

3.1 Basic assumptions

We assume, as in the traditional Noether deformation procedure, that the deformed action

can be expressed as a power series in a coupling constant g , the zeroth-order term in the

expansion describing the free theory S0 :

S = S0 + g S1 + O(g2) .

The procedure is then perturbative: one tries to construct the deformations order by order

in the deformation parameter g .

Some physical requirements naturally come out:

• Poincaré and parity symmetry: We ask that the deformed Lagrangian be invariant

under the Poincaré group. Therefore, it should not depend explicitly on the space-

time cartesian coordinates {xµ}. The Lagrangian is moreover required to be invariant

under the parity transformation. This implies that all Greek indices have to be

contracted by means of the Minkowski metric only.

• Nontriviality: We reject trivial deformations arising from field-redefinitions that re-

duce to the identity at order g0 :

φ −→ φ′ = φ + g ϕ(φ, ∂φ, · · ·) + O(g2) . (3.1)

• Consistency: A deformation of a theory is called consistent if the deformed theory

possesses the same number of (possibly deformed) independent gauge symmetries,

reducibility identities, etc., as the system we started with. In other words, the number

of physical degrees of freedom is unchanged.

• Locality: The deformed action S[φ] must be a local functional. The deformations of

the gauge transformations, etc., must be local functions, as well as the allowed field

redefinitions.

We remind the reader that a local function of some set of fields φi is a smooth function

of the fields φi and their derivatives ∂φi, ∂2φi, ... up to some finite order, say k, in the

number of derivatives. Such a set of variables φi, ∂φi, . . . , ∂kφi will be collectively denoted

by [φi]. Therefore, a local function of φi is denoted by f([φi]). A local p-form (0 6 p 6 n)

is a differential p-form the components of which are local functions:

ω =
1

p!
ωµ1...µp(x, [φi]) dxµ1 ∧ · · · ∧ dxµp .

A local functional is the integral of a local n-form.

– 5 –



J
H
E
P
0
1
(
2
0
0
6
)
0
5
2

3.2 Main results

Theorems 1 and 2 are presented in this section. They constitute strong yes-go and no-go

theorems that generalize previous works on spin-3 self-interactions.

Theorem 1. Let ha
µνρ be a collection of spin-3 gauge fields (a = 1, . . . , N) described by the

local and quadratic action of Fronsdal, in dimension n > 3.

At first order in some smooth deformation parameter, the nontrivial consistent local

deformations of the (abelian) gauge algebra that are invariant under parity and Poincaré

transformations, may always be assumed to be closed off-shell and are in one-to-one corre-

spondence with the structure constant tensors

Ca
bc = −Ca

cb

of an anticommutative internal algebra, that may be taken as deformation parameters.

Moreover, the most general gauge transformations deforming the gauge algebra at first

order in C = (f, g) are equal to

δλha
µνρ = 3 ∂(µλa

νρ) + fa
bc Φbc

µνρ + ga
bc

(
Ψbc

µνρ −
1

n
η(µνΨbc

ρ)

)
+ O(C2) , (3.2)

up to gauge transformations that either are trivial or do not deform the gauge algebra at

first order, where Φbc
µνρ and Ψbc

µνρ are bilinear local functions of the gauge field ha
µνρ and

the traceless gauge parameter λa
µν . The expression for Φ is lengthy and thus given in the

appendix A, while

Ψbc
µνρ = −

1

3
ηαβ∂[µhb

α]ν[σ,τ ]∂[ρλ
c σ,τ
β] + perms , (3.3)

where a coma denotes a partial derivative6 and “perms” stands for the sum of terms ob-

tained via all nontrivial permutations of the indices µ , ν , ρ from the first term of the r.h.s.

The structure constant tensors fa
bc and ga

bc are some arbitrary constant tensors that are

antisymmetric in the indices bc. In mass units, the coupling constant fa
bc has dimension

−n/2 and ga
bc has dimension −2 − n/2.

Both of these deformations exist in any dimension n > 5. In the case n = 4 , the

structure constant tensor ga
bc vanishes.

Firstly, we found a deformation of the gauge symmetries (the one corresponding to the

coefficients ga
bc) which had not explicitly been written in previous spin-3 analyzes in flat

space-time. Secondly, without imposing any restriction on the maximal number of deriva-

tives (as was implicit in most former works) we prove that the allowed possibilities are

extremely restricted.

An important question is whether these gauge algebra deformations can be obtained

from an appropriate flat space-time limit of the (A)dSn higher-spin algebras containing

a finite-dimensional non-Abelian internal subalgebra (studied in details by Vasiliev and

collaborators [30]). An indication that this might be the case is provided by the deformation

6For example Φi
, α ≡ ∂αΦi.
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of the gauge transformations eq. (3.2) involving the tensor Ψab
µνρ. The presence of the term

∂[µhb
α]ν[σ,τ ] in (3.3) is reminiscent of the second frame-like connection (see e.g. the second

reference of [3]). They both involve two derivatives of the spin-3 field and have the gl(n)-

symmetry corresponding to the Young diagram . More comments in that direction

are given in sections 4.3 and 5.3.

Another important physical question is whether or not these first-order gauge sym-

metry deformations possess some Lagrangian counterpart, i.e. if there exist vertices that

are invariant under (3.2) at first order in C. The following theorem provides a sufficient

condition for that:

Theorem 2. Let the constant tensor Cabc = (fabc, gabc) be completely antisymmetric, where

Cabc := δadC
d
bc . Then,

• The quadratic local action (2.1) in dimension n > 3 admits a first-order consistent

deformation

S[ha
µνρ] = S0 + fabc Sabc + gabc T abc + O(C2) , (3.4)

which is gauge invariant under the deformed gauge transformations (3.2) at first order in

the deformation parameters. Furthermore, this antisymmetry condition on the tensor fa
bc

is necessary for the existence of the corresponding deformation of the action.

• The vertices in the first-order deformations are determined uniquely by the struc-

ture constants fabc and gabc, modulo vertices that do not deform the gauge algebra. The

corresponding local functionals Sabc[hd
µνρ] and T abc[hd

µνρ] are cubic in the gauge field and

respectively contain three and five derivatives. Actually, there are no other nontrivial con-

sistent vertices containing at most three derivatives that deform the gauge transformation

at first order.

• At second order in C, the deformation of the gauge algebra can be assumed to close

off-shell without loss of generality, but it is obstructed if and only if fabc 6= 0 .

The first-order covariant cubic deformation Sbc
a[h

d
µνρ] is the Berends–Burgers–van Dam

vertex [6] (reviewed for completeness in Appendix A) while the other cubic deformation

T bc
a[h

d
µνρ] is written in Appendix B. We do not know yet if the antisymmetry condition

on the structure constant ga
bc is necessary or not for the existence of a consistent vertex at

first order.

It is possible to provide a more intrinsic characterization of the conditions on the

constant tensors. Let A be an anticommutative algebra of dimension N with a basis {Ta}

. Its multiplication law ∗ : A2 → A obeys a ∗ b = −b ∗ a for any a, b ∈ A, which is

equivalent to the fact that the structure constant tensor Ca
bc defined by Tb ∗ Tc = Ca

bc Ta

is antisymmetric in the covariant indices: Ca
bc = −Ca

cb. Moreover, let us assume that the

algebra A is a Euclidean space, i.e. it is endowed with a scalar product 〈 , 〉 : A2 → R with

respect to which the basis {Ta} is orthonormal, 〈Ta , Tb 〉 = δab. For an anticommutative

algebra, the scalar product is said to be invariant (under the left or right multiplication) if

and only if 〈 a ∗ b , c 〉 = 〈 a , b ∗ c 〉 for any a, b, c ∈ A , and the latter property is equivalent

to the complete antisymmetry of the trilinear form

C : A3 → R : (a, b, c) 7→ C(a, b, c) = 〈 a , b ∗ c 〉

– 7 –
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or, in components, to the complete antisymmetry property of the covariant tensor Cabc :=

δad Cd
bc.

The gauge algebra inferred from the Berends-Burgers-van Dam vertex is inconsistent

at second order [7, 9] and no corresponding quartic interaction can be constructed [10].

Originally, consistency of the Berends–Burgers–van Dam deformation at second order was

shown to require that fd
ecf

e
ab = fd

aef
e
bc [9], which means that the corresponding internal

algebra is associative (a ∗ b) ∗ c = a ∗ (b ∗ c). In section 5.2.2, we actually obtain a stronger

condition from consistency: fd
ecf

e
ab = 0, i.e. the internal algebra is nilpotent of order

three: (a ∗ b) ∗ c = 0. In any case, to derive that the Berends–Burgers–van Dam vertex is

inconsistent at order two, one may use the following well-known lemma

Lemma 1. If an anticommutative algebra endowed with an invariant scalar product is

associative, then the product of any two elements is zero (in other words, the algebra is

nilpotent of order two).

Proof: Under the hypotheses of Lemma 1, one gets 〈 a ∗ b , b ∗ a 〉 = 〈 a , b ∗ (b ∗ a) 〉 =

〈 a , (b ∗ b) ∗ a 〉 = 0 which implies a ∗ b = 0 for any a, b ∈ A.

An exciting result is that the second deformation corresponding to gabc = g[abc] passes

the gauge algebra consistency requirement where the vertex of Berends, Burgers and van

Dam fails. Unfortunately, we do not know if there exist second order gauge transformations

that are consistent at this order.

The proofs of Theorems 1 and 2 are given in section 5. They rely on a BRST cohomo-

logical reformulation presented in the next section.

4. BRST settings

4.1 BRST spectrum and differential

According to the general rules of the BRST-antifield formalism, a grassmann-odd ghost Ca
µν

is introduced, which accompanies each grassmann-even gauge parameter λa
µν . In particular,

it possesses the same algebraic symmetries as λa
µν : it is symmetric and traceless in its

spacetime indices. Then, to each field and ghost of the spectrum, a corresponding antifield

(or antighost) is added, with the same algebraic symmetries but the opposite Grassmann

parity. A Z-grading called ghost number (gh) is associated with the BRST differential s,

while the antighost number (antigh) of the antifield Z∗ associated with the field (or ghost)

Z is given by antigh(Z∗) ≡ gh(Z) + 1 . More precisely, in the theory under consideration,

the spectrum of fields (including ghosts) and antifields together with their respective ghost

and antighost numbers is given by

• the fields ha
µνρ , with ghost number 0 and antighost number 0;

• the ghosts Ca
µν , with ghost number 1 and antighost number 0;

• the antifields h∗µνρ
a , with ghost number −1 and antighost number 1;

• the antifields C∗µν
a , with ghost number −2 and antighost number 2 .

– 8 –
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Z puregh(Z) antigh(Z) gh(Z) parity (mod 2)

ha
µνρ 0 0 0 0

Ca
µν 1 0 1 1

h∗µνρ
a 0 1 −1 1

C∗µν
a 0 2 −2 0

Table 1: Pureghost number, antighost number, ghost number and parity of the (anti)fields.

The BRST differential s of the free theory (2.1), (2.2) is generated by the functional

W0 = S0[h
a] +

∫
dnx (3h∗µνρ

a ∂µCa
νρ) .

More precisely, W0 is the generator of the BRST differential s of the free theory through

sA = (W0, A)a.b. ,

where the antibracket ( , )a.b. is defined by

(A,B)a.b. =
δRA

δΦI

δLB

δΦ∗
I

−
δRA

δΦ∗
I

δLB

δΦI
. (4.1)

The functional W0 is a solution of the master equation

(W0,W0)a.b. = 0 . (4.2)

In the theory at hand, the BRST-differential s decomposes into s = γ + δ . The first

piece γ , the differential along the gauge orbits, is associated with another grading called

pureghost number (puregh) and increases it by one unit, whereas the Koszul-Tate differen-

tial δ decreases the antighost (or antifield) number by one unit. The differential s increases

the ghost number by one unit. Furthermore, the ghost, antighost and pureghost gradings

are not independent. We have the relation

gh = puregh − antigh . (4.3)

The pureghost number, antighost number, ghost number and grassmannian parity of

the various fields are displayed in table 1.

The action of the differentials δ and γ gives zero on all the fields of the formalism

except in the few following cases:

δh∗µνρ
a = Gµνρ

a ,

δC∗µν
a = −3

(
∂ρh

∗µνρ
a −

1

n
ηµν∂ρh

∗ρ
a

)
,

γha
µνρ = 3 ∂(µCa

νρ) .

(4.4)

– 9 –
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4.2 BRST deformation

As shown in [20], the Noether procedure can be reformulated within a BRST-cohomological

framework. Any consistent deformation of the gauge theory corresponds to a solution

W = W0 + gW1 + g2W2 + O(g3)

of the deformed master equation (W,W )a.b. = 0. Consequently, the first-order nontrivial

consistent local deformations W1 =
∫

an, 0 are in one-to-one correspondence with elements

of the cohomology Hn, 0(s| d) of the zeroth order BRST differential s = (W0, ·) modulo the

total derivative d , in maximum form-degree n and in ghost number 0 . That is, one must

compute the general solution of the cocycle condition

san, 0 + dbn−1,1 = 0 , (4.5)

where an, 0 is a top-form of ghost number zero and bn−1,1 a (n − 1)-form of ghost number

one, with the understanding that two solutions of (4.5) that differ by a trivial solution

should be identified

an, 0 ∼ an, 0 + spn,−1 + dqn−1, 0

as they define the same interactions up to field redefinitions (3.1). The cocycles and

coboundaries a, b, p, q, . . . are local forms of the field variables (including ghosts and anti-

fields).

The corresponding second-order interactions W2 must satisfy the consistency condition

sW2 = −
1

2
(W1,W1)a.b. .

This condition is controlled by the local BRST cohomology group Hn,1(s|d).

4.3 Cohomology of γ

In the context of local free theories in Minkowski space for massless spin-s gauge fields

represented by completely symmetric (and double traceless when s > 3) rank s tensors,

the groups H∗(γ) have recently been calculated [24]. Accordingly, we only recall the latter

results in the special case s = 3 and introduce some new notations.

Proposition 1. The cohomology of γ is isomorphic to the space of functions depending on

• the antifields h∗µνρ
a , C∗µν

a and their derivatives, denoted by [Φ∗i] ,

• the curvature and its derivatives [Ka
αµ|βν|γρ

] ,

• the symmetrized derivatives ∂(α1
. . . ∂αk

F a
µνρ) of the Fronsdal tensor,

• the ghosts Ca
µν and the traceless parts of ∂[αCa

µ]ν and ∂[αCa
µ][ν,β].
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Thus, identifying with zero any γ-exact term in H(γ), we have

γf = 0

if and only if

f = f
(
[Φ∗i], [Ka

αµ|βν|γρ], {F
a
µνρ}, C

a
µν , T̂ a

αµ|ν , Ûa
αµ|βν

)

where {F a
µνρ} stands for the completely symmetrized derivatives ∂(α1

. . . ∂αk
F a

µνρ) of the

Fronsdal tensor, while T̂ a
αµ|ν denotes the traceless part of T a

αµ|ν := ∂[αCa
µ]ν and Ûa

αµ|βν
the

traceless part of Ua
αµ|βν

:= ∂[αCa
µ][ν,β] .

This proposition provides the possibility of writing down the most general gauge-

invariant interaction terms. Such higher-derivative Born-Infeld-like Lagrangians were al-

ready considered in Ref. [12]. These deformations are consistent to all orders but they do

not deform the gauge transformations (2.2). Also notice that any function of the Fronsdal

tensor or its derivatives corresponds to a field redefinition.

Let {ωI} be a basis of the space of polynomials in the Ca
µν , T̂ a

αµ|ν and Ûa
αµ|βν

(since

these variables anticommute, this space is finite-dimensional). If a local form a is γ-closed,

we have

γa = 0 ⇒ a = αJ([Φi∗], [K], {F})ωJ (Ca
µν , T̂ a

αµ|ν , Ûa
αµ|βν) + γb , (4.6)

If a has a fixed, finite ghost number, then a can only contain a finite number of antifields.

Moreover, since the local form a possesses a finite number of derivatives, we find that

the αJ are polynomials. Such a polynomial αJ([Φi∗], [K], {F}) will be called an invariant

polynomial .

Remark 1: Because of the Damour-Deser identity [28]

ηαβKαµ|βν|γρ ≡ 2 ∂[γFρ]µν ,

the derivatives of the Fronsdal tensor are not all independent of the curvature tensor

K. This is why, in Proposition 1, the completely symmetrized derivatives of F appear,

together with all the derivatives of the curvature K. However, from now on, we will

assume that every time the trace ηαβKαµ|βν|γρ appears, we substitute 2∂[γFρ]µν for it.

With this convention, we can write αJ([Φi∗], [K], [F ]) instead of the unconvenient notation

αJ ([Φi∗], [K], {F}).

Remark 2: It is possible to make a link with the variables occurring in the frame-like

first-order formulation of free massless spin-3 fields in Minkowski space-time [32]. In this

context, the spin-3 field is represented off-shell by a frame-like object eµ|ab, symmetric

and traceless in the internal indices (a, b). The spin-3 connection ωµ|b|a1a2
is traceless in

the internal Latin indices, symmetric in (a1, a2) and obeys ωµ|(b|a1a2) ≡ 0. The gauge

transformations are δeµ|ab = ∂µξab + αµ|ab, δωµ|b|a1a2
= ∂µαb|a1a2

+ Σµ|b|a1a2
, where the

parameter ξab is symmetric and traceless in (a, b), the generalized Lorentz parameter αµ|ab

is completely traceless, symmetric in (a, b) and satisfies the identity α(µ|ab) ≡ 0, so that it
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belongs to the o(n − 1, 1)-irreducible module labeled by the Young tableau
a b
µ . Finally,

the parameter Σµ|a|bc transforms in the o(n − 1, 1) irreducible representation associated

with the Young tableau
b c
a µ , in the manifestly symmetric convention. By choosing the

generalized Lorentz parameter appropriately, it is possible to work in the gauge where the

frame-field eµ|ab is completely symmetric, eµ|ab = e(µ|ab) ≡ hµab. Then, it is still possible

to perform a gauge transformation with parameters αµ|ab and ξab, provided the traceless

component of ∂[µξa]b be equal to −α[µ|a]b. The traceless component of ∂[µξa]b is nothing

but the variable T̂µα|β in the BRST conventions. Furthermore, in the 1.5 formalism where

the connection is still present in the action, but viewed as a function of eµ|a1a2
, consistency

with the “symmetric gauge” eµ|ab = e(µ|ab) ≡ hµab implies that the traceless component of

the second derivative ∂[aξb][c,µ] be entirely determined by Σµ|b|ac. The traceless component

of ∂[aξb][c,µ] is the variable Ûαβ|γµ in the BRST language. The relations T̂µα|β ←→ αµ|ab and

Ûαβ|γµ ←→ Σµ|b|ac are now manifest (note that we work in the manifestly antisymmetric

convention, as opposed to the choice made in [32]). The variables {Cµν , T̂µα|β , Ûαβ|γµ} ∈

H(γ) in the ghost sector are in one-to-one correspondence with the gauge parameters

{ξµν , αµ|ab,Σµ|b|ac} of the first-order formalism [32].

4.4 Invariant Poincaré lemma

We shall need several standard results on the cohomology of d in the space of invariant

polynomials.

Proposition 2. In form degree less than n and in antifield number strictly greater than 0,

the cohomology of d is trivial in the space of invariant polynomials. That is to say, if α is

an invariant polynomial, the equation dα = 0 with antigh(α) > 0 implies α = dβ where β

is also an invariant polynomial.

The latter property is rather generic for gauge theories (see e.g. Ref. [22] for a proof), as

well as the following:

Proposition 3. If a has strictly positive antifield number, then the equation γa + db = 0

is equivalent, up to trivial redefinitions, to γa = 0. More precisely, one can always add

d-exact terms to a and get a cocycle a′ := a + dc of γ, such that γa′ = 0.

Proof: Along the lines of Ref. [22], we consider the descent associated with γa + db = 0:

from this equation, one infers, by using the properties γ2 = 0, γd+dγ = 0 and the triviality

of the cohomology of d, that γb + dc = 0 for some c. Going on in the same way, we build

a “descent”

γa + db = 0

γb + dc = 0

γc + de = 0 ,
... (4.7)

γm + dn = 0 ,

γn = 0 .
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in which each successive equation has one less unit of form-degree. The descent ends with

γn = 0 either because n is a zero-form, or because one stops earlier with a γ-closed term.

Now, because n is γ-closed, one has, up to trivial, irrelevant terms, n = αJωJ . Inserting

this into the previous equation in the descent yields

d(αJ)ωJ ± αJdωJ + γm = 0. (4.8)

In order to analyse this equation, we introduce a new differential.

Definition (differential D): The action of the differential D on ha
µνρ, h∗µνρ

a , C∗µν
a and

all their derivatives is the same as the action of the total derivative d, but its action on the

ghosts is given by :

DCa
µν =

4

3
dxα T̂ a

α(µ|ν) ,

DT̂ a
µα|β = dxρ Ûa

µα|ρβ ,

D(∂ρ1...ρtCµ) = 0 if t > 2. (4.9)

The above definitions follow from

∂αCa
µν =

1

3
(γha

αµν) +
4

3
T a

α(µ|ν) ,

∂ρTµα|β = −
1

2
γ(∂[αhµ]βρ) + Uµα|ρβ ,

∂ρUµα|νβ =
1

3
γ(∂[µhα]ρ[β,ν]) . (4.10)

The operator D thus coincides with d up to γ-exact terms.

It follows from the definitions that DωJ = AJ
Iω

I for some constant matrix AJ
I that

involves dxµ only. One can rewrite (4.8) as

d(αJ )ωJ ± αJDωJ

︸ ︷︷ ︸
=(dαJ ±αIAI

J )ωJ

+γm′ = 0 (4.11)

which implies,

d(αJ)ωJ ± αJDωJ = 0 (4.12)

since a term of the form βJωJ (with βJ invariant) is γ-exact if and only if it is zero. It is

also convenient to introduce a new grading.

Definition (D-degree): The number of T̂αµ|ν ’s plus two times the number of Ûαµ|βν ’s is

called the D-degree. It is bounded because there is a finite number of T̂αµ|ν ’s and Ûαµ|βν ’s,

which are anticommuting. The operator D splits as the sum of an operator D1 that raises

the D-degree by one unit, and an operator D0 that leaves it unchanged. D0 has the same

action as d on hµνρ, h∗µνρ, C∗αβ and all their derivatives, and gives 0 when acting on the

ghosts. D1 gives 0 when acting on all the variables but the ghosts on which it reproduces

the action of D.

Let us expand (4.8) according to the D-degree. At lowest order, we get

dαJ0
= 0 (4.13)
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where J0 labels the ωJ that contain no derivative of the ghosts (DωJ = D1ω
J contains at

least one derivative). This equation implies, according to Proposition 2, that αJ0
= dβJ0

where βJ0
is an invariant polynomial. Accordingly, one can write

αJ0
ωJ0 = d(βJ0

ωJ0) ∓ βJ0
DωJ0 + γ-exact terms. (4.14)

The term βJ0
DωJ0 has D-degree equal to 1. Thus, by adding trivial terms to the last

term n(= αJωJ) in the descent (4.7), we can assume that it does not contain any term of

D-degree 0. One can then successively remove the terms of D-degree 1, D-degree 2, etc,

until one gets n = 0. One then repeats the argument for m and the previous terms in the

descent (4.7) until one gets b = 0, i.e., γa = 0, as requested.

4.5 Cohomology of δ modulo d : Hn
k (δ| d)

In this section, we review the local Koszul-Tate cohomology groups in top form-degree and

antighost numbers k > 2 . The group HD
1 (δ| d) describes the infinitely many conserved

currents and will not be studied here.

Let us first recall a general theorem (Theorem 9.1 in [33]).

Proposition 4. For a linear gauge theory of reducibility order r,

Hn
p (δ| d) = 0 for p > r + 2 .

Since the theory at hand has no reducibility, we are left with the computation of

Hn
2 (δ| d) . The cohomology Hn

2 (δ| d) is given by the following theorem.

Proposition 5. A complete set of representatives of Hn
2 (δ|d) is given by the antifields

C∗µν
a , up to explicitly x-dependent terms. In detail,

δan
2 + dbn−1

1 = 0 ,

an
2 ∼ an

2 + δcn
3 + dcn−1

2

}
⇐⇒

{
an

2 = La
µν(x)C∗µν

a dnx + δbn
3 + dbn−1

2 ,

La
µν(x) = λa

µν + Aa
µν|ρx

ρ + Ba
µν|ρσ

xρxσ .

The constant tensor λa
µν is symmetric and traceless in the indices µν, and so are the

constant tensors Aa
µν|ρ and Ba

µν|ρσ
. Moreover, the tensors Aa

µν|ρ and Ba
µν|ρσ

transform in

the irreducible representations of GL(n, R) labeled by the Young tableaux
µ ν
ρ and

µ ν
ρ σ ,

meaning that

Aa
µν|ρ = Aa

νµ|ρ , Aa
(µν|ρ) ≡ 0 ,

Ba
µν|ρσ = Ba

νµ|ρσ = Ba
µν|σρ , Ba

(µν|ρ)σ = 0 . (4.15)

Together with the tracelessness constraints on the constant tensors Aa
µν|ρ and Ba

µν|ρσ
, the

Gl(n, R) irreducibility conditions written here above imply that the tensors λa
µν , Aa

µν|ρ and

Ba
µν|ρσ

respectively transform in the irreducible representations of O(n− 1, 1) labeled by the

Young tableaux µ ν ,
µ ν
ρ and

µ ν
ρ σ .

The proof of Proposition 5 in the general spin-s case has been given in Ref. [24] (see

also [34]). The spin-3 case under consideration was already written in Ref. [35].
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4.6 Invariant cohomology of δ modulo d: Hn,inv
k (δ| d)

We have studied above the cohomology of δ modulo d in the space of arbitary local functions

of the fields ha
µνρ, the antifields Φ∗i, and their derivatives. One can also study Hn

k (δ|d) in

the space of invariant polynomials in these variables, which involve ha
µνρ and its derivatives

only through the curvature K, the Fronsdal tensor F , and their derivatives (as well as the

antifields and their derivatives). The above theorems remain unchanged in this space, i.e.

Hn,inv
k (δ| d) ∼= 0 for k > 2 . This very nontrivial property is crucial for the computation of

Hn,0(s| d) and is a consequence of

Theorem 3. Assume that the invariant polynomial ap
k (p = form-degree, k = antifield

number) is δ-trivial modulo d,

ap
k = δµp

k+1 + dµp−1
k (k > 2). (4.16)

Then, one can always choose µp
k+1 and µp−1

k to be invariant.

To prove the theorem, we need the following lemma, a proof of which can be found

e.g. in [22].

Lemma 2. If a is an invariant polynomial that is δ-exact, a = δb, then, a is δ-exact in

the space of invariant polynomials. That is, one can take b to be also invariant.

The next two subsections are devoted to the proof of Theorem 3.

4.6.1 Propagation of the invariance in form degree

We first derive a chain of equations with the same structure as (4.16) [36]. Acting with d

on (4.16), we get dap
k = −δdµp

k+1. Using the lemma and the fact that dap
k is invariant, we

can also write dap
k = −δap+1

k+1 with ap+1
k+1 invariant. Substituting this into dap

k = −δdµp
k+1,

we get δ
[
ap+1

k+1 − dµp
k+1

]
= 0. As H(δ) is trivial in antifield number > 0, this yields

ap+1
k+1 = δµp+1

k+2 + dµp
k+1 (4.17)

which has the same structure as (4.16). We can then repeat the same operations, until we

reach form-degree n,

an
k+n−p = δµn

k+n−p+1 + dµn−1
k+n−p. (4.18)

Similarly, one can go down in form-degree. Acting with δ on (4.16), one gets δap
k =

−d(δµp−1
k ). If the antifield number k − 1 of δap

k is greater than or equal to one (i.e.,

k > 1), one can rewrite, thanks to Proposition 2, δap
k = −dap−1

k−1 where ap−1
k−1 is invariant.

(If k = 1 we cannot go down and the bottom of the chain is (4.16) with k = 1, namely

ap
1 = δµp

2 + dµp−1
1 .) Consequently d

[
ap−1

k−1 − δµp−1
k

]
= 0 and, as before, we deduce another

equation similar to (4.16) :

ap−1
k−1 = δµp−1

k + dµp−1
k−1. (4.19)
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Applying δ on this equation the descent continues. This descent stops at form degree zero

or antifield number one, whichever is reached first, i.e.,

either a0
k−p = δµ0

k−p+1

or ap−k+1
1 = δµp−k+1

2 + dµp−k
1 . (4.20)

Putting all these observations together we can write the entire descent as

an
k+n−p = δµn

k+n−p+1 + dµn−1
k+n−p

...

ap+1
k+1 = δµp+1

k+2 + dµp
k+1

ap
k = δµp

k+1 + dµp−1
k

ap−1
k−1 = δµp−1

k + dµp−2
k−1

...

either a0
k−p = δµ0

k−p+1

or ap−k+1
1 = δµp−k+1

2 + dµp−k
1 (4.21)

where all the ap±i
k±i are invariants.

Let us show that when one of the µ’s in the chain is invariant, we can actually choose

all the other µ’s in such a way that they share this property. In other words, the invariance

property propagates up and down in the ladder. Let us thus assume that µc−1
b is invariant.

This µc−1
b appears in two equations of the descent :

ac
b = δµc

b+1 + dµc−1
b ,

ac−1
b−1 = δµc−1

b + dµc−2
b−1 (4.22)

(if we are at the bottom or at the top, µc−1
b occurs in only one equation, and one should

just proceed from that one). The first equation tells us that δµc
b+1 is invariant. Thanks to

Lemma 2 we can choose µc
b+1 to be invariant. Looking at the second equation, we see that

dµc−2
b−1 is invariant and by virtue of Proposition 2, µc−2

b−1 can be chosen to be invariant since

the antifield number b is positive. These two µ’s appear each one in two different equations

of the chain, where we can apply the same reasoning. The invariance property propagates

then to all the µ’s. Consequently, it is enough to prove the theorem in form degree n.

4.6.2 Top form degree

Two cases may be distinguished depending on whether the antifield number k is greater

than n or not.

In the first case, one can prove the following lemma:

Lemma 3. If an
k is of antifield number k > n, then the “µ”s in (4.16) can be taken to be

invariant.
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Proof for k > n : If k > n, the last equation of the descent is a0
k−n = δµ0

k−n+1. We can,

using Lemma 2, choose µ0
k−n+1 invariant, and so, all the µ’s can be chosen to have the

same property.

It remains therefore to prove Theorem 3 in the case where the antifield number satisfies

k 6 n. Rewriting the top equation (i.e. (4.16) with p = n) in dual notation, we have

ak = δbk+1 + ∂ρj
ρ
k , (k > 2). (4.23)

We will work by induction on the antifield number, showing that if the property expressed

in Theorem 3 is true for k + 1 (with k > 1), then it is true for k. As we already know that

it is true in the case k > n, the theorem will be proved.

Inductive proof for k 6 n : The proof follows the lines of Ref. [36] and decomposes in

two parts. First, all Euler-Lagrange derivatives of (4.23) are computed. Second, the Euler-

Lagrange (E.L.) derivative of an invariant quantity is also invariant. This property is used

to express the E.L. derivatives of ak in terms of invariants only. Third, the homotopy

formula is used to reconstruct ak from its E.L. derivatives. This almost ends the proof.

(i) Let us take the E.L. derivatives of (4.23). Since the E.L. derivatives with respect

to the C∗
α commute with δ, we get first :

δLak

δC∗
αβ

= δZαβ
k−1 (4.24)

with Zαβ
k−1 =

δLbk+1

δC∗
αβ

. For the E.L. derivatives of bk+1 with respect to h∗
µνρ we obtain, after

a direct computation,

δLak

δh∗
µνρ

= −δXµνρ
k + 3∂(µZ

νρ)
k−1. (4.25)

where Xµνρ
k =

δLbk+1

δh∗
µνρ

. Finally, let us compute the E.L. derivatives of ak with respect to

the fields. We get :

δLak

δhµνρ
= δY µνρ

k+1 + Gµνρ|αβγXαβγ|k (4.26)

where Y µνρ
k+1 =

δLbk+1

δhµνρ
and Gµνρ|αβγ(∂) is the second-order self-adjoint differential operator

appearing in the equations of motion (2.3):

Gµνρ = Gµνρ|αβγ hαβγ .

The hermiticity of G implies Gµνρ|αβγ = Gαβγ|µνρ.

(ii) The E.L. derivatives of an invariant object are invariant. Thus, δLak

δC∗
αβ

is invariant.

Therefore, by Lemma 2 and eq. (4.24), we have also

δLak

δC∗
αβ

= δZ ′αβ
k−1 (4.27)
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for some invariant Z ′αβ
k−1. Indeed, let us write the decomposition Zαβ

k−1 = Z ′αβ
k−1+Z̃αβ

k−1, where

Z̃αβ
k−1 is obtained from Zαβ

k−1 by setting to zero all the terms that belong only to H(γ). The

latter operation clearly commutes with taking the δ of something, so that eq. (4.24) gives

0 = δZ̃αβ
k−1 which, by the acyclicity of δ, yields Z̃αβ

k−1 = δσαβ
k where σαβ

k can be chosen to

be traceless. Substituting δσαβ
k + Z ′αβ

k−1 for Zαβ
k−1 in eq. (4.24) gives eq. (4.27).

Similarly, one easily verifies that

δLak

δh∗
µνρ

= −δX ′µνρ
k + 3∂(µZ

′νρ)
k−1 , (4.28)

where Xµνρ
k = X ′µνρ

k + 3∂(µσ
νρ)
k + δρµνρ

k+1. Finally, using Gµνρ
αβγ ∂(ασβγ)

k = 0 due to the

gauge invariance of the equations of motion (σαβ has been taken traceless), we find

δLak

δhµνρ
= δY ′µνρ

k+1 + Gµνρ
αβγX ′αβγ

k (4.29)

for the invariants X ′µνρ
k and Y ′µνρ

k+1 . Before ending the argument by making use of the

homotopy formula, it is necessary to know more about the invariant Y ′µνρ
k+1 .

Since ak is invariant, it depends on the fields only through the curvature K, the

Fronsdal tensor and their derivatives. (We remind the reader of our convention of section

4.3 to substitute 2∂[γFρ]µν for ηαβKαµ|βν|γρ everywhere.) We then express the Fronsdal

tensor in terms of the Einstein tensor (2.4): Fµνρ = Gµνρ −
3
n
η(µνGρ), so that we can write

ak = ak([Φ
∗i], [K], [G]) , where [G] denotes the Einstein tensor and its derivatives. We can

thus write

δLak

δhµνρ
= Gµνρ

αβγA′αβγ
k + ∂α∂β∂γM ′αµ|βν|γρ

k (4.30)

where

A′αβγ
k ∝

δak

δGαβγ

and

M ′αµ|βν|γρ
k ∝

δak

δKαµ|βν|γρ

are both invariant and respectively have the same symmetry properties as the “Einstein”

and “Riemann” tensors.

Combining eq. (4.29) with eq. (4.30) gives

δY ′µνρ
k+1 = ∂α∂β∂γM ′αµ|βν|γρ

k + Gµνρ
αβγB′αβγ

k (4.31)

with B′αβγ
k := A′αβγ

k −X ′αβγ
k . Now, only the first term on the right-hand-side of eq. (4.31) is

divergence-free, ∂µ(∂αβγM ′αµ|βν|γρ

k ) ≡ 0, not the second one which instead obeys a relation

analogous to the Noether identities (2.6). As a result, we have δ
[
∂µ(Y ′µνρ

k+1−
1
n
ηνρY ′µ

k+1)
]

=

0 , where Y ′µ
k+1 ≡ ηνρY

′µνρ
k+1 . By Lemma 2, we deduce

∂µ

(
Y ′µνρ

k+1 −
1

n
ηνρY ′µ

k+1

)
+ δF ′νρ

k+2 = 0 , (4.32)
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where F ′νρ
k+2 is invariant and can be chosen symmetric and traceless. Eq. (4.32) determines

a cocycle of Hn−1
k+1 (d|δ), for given ν and ρ. Using the general isomorphisms Hn−1

k+1 (d|δ) ∼=

Hn
k+2(δ|d) ∼= 0 (k > 1) [33] gives

Y ′µνρ
k+1 −

1

n
ηνρY ′µ

k+1 = ∂αT
αµ|νρ
k+1 + δPµνρ

k+2 , (4.33)

where both T
αµ|νρ
k+1 and Pµνρ

k+2 are invariant by the induction hypothesis. Moreover, T
αµ|νρ
k+1

is antisymmetric in its first two indices. The tensors T
αµ|νρ
k+1 and Pµνρ

k+2 are both symmetric-

traceless in (ν, ρ). This results easily from taking the trace of eq. (4.33) with ηνρ and using

the general isomorphisms Hn−2
k+1 (d|δ) ∼= Hn−1

k+2 (δ|d) ∼= Hn
k+3(δ|d) ∼= 0 [33] which hold since

k is positive. From eq. (4.33) we obtain

Y ′µνρ
k+1 = ∂α

[
T

αµ|νρ
k+1 +

1

n − 1
ηνρT

α|µ
k+1

]
+ δ

[
Pµνρ

k+2 +
1

n − 1
ηνρPµ

k+2

]
, (4.34)

where T
α|µ
k+1 ≡ ηνρT

αν|ρµ
k+1 and Pµ

k+2 ≡ ηνρP
νρµ
k+2 . Since Y ′µνρ

k+1 is symmetric in µ and ν, we have

also ∂α[T
α[µ|ν]ρ
k+1 + 1

n−1T
α|[µ
k+1 ην]ρ] + δ[P

[µν]ρ
k+2 + 1

n−1ηρ[νP
µ]
k+2] = 0 . The triviality of Hn

k+2(d|δ)

(k > 0) implies again that (P
[µν]ρ
k+2 + 1

n−1ηρ[νP
µ]
k+2) and (T

α[µ|ν]ρ
k+1 + 1

n−1T
α|[µ
k+1 ην]ρ) are trivial,

in particular,

T
α[µ|ν]ρ
k+1 +

1

n − 1
T

α|[µ
k+1 ην]ρ = ∂βS

βα|µν|ρ
k+1 + δQαµνρ

k+2 (4.35)

where S
βα|µν|ρ
k+1 is antisymmetric in (β, α) and (µ, ν). Moreover, it is traceless in µ, ν, ρ as the

left hand side of the above equation shows. The induction assumption allows us to choose

S
βα|µν|ρ
k+1 and Qαµνρ

k+2 invariant. We now project both sides of eq. (4.35) on the symmetries

of the Weyl tensor. For example, denoting by W
β|µν|αρ

k+1 the projection Wµ ν α ρ
µ′ν′α′ρ′S

βα′|µ′ν′|ρ′

k+1

of S
βα|µν|ρ
k+1 , we have

W
β|µν|αρ
k+1 = W

β|αρ|µν
k+1 = −W

β|νµ|αρ
k+1 = −W

β|µν|ρα
k+1 ,

W
β|µ[ν|αρ]
k+1 = 0 , ηµαW

β|µν|αρ
k+1 = 0 .

As a consequence of the symmetries of T
αµ|νρ
k+1 , the projection of eq. (4.35) on the symmetries

of the Weyl tensor gives

0 = ∂βW
β|µν|αρ
k+1 + δ(. . .) (4.36)

where we do not write the (invariant) δ-exact terms explicitly because they play no role

in what follows. eq. (4.36) determines, for given (µ, ν, α, ρ), a cocycle of Hn−1
k+1 (d|δ,H(γ)).

Using again the isomorphisms [33] Hn−1
k+1 (d|δ) ∼= Hn

k+2(δ|d) ∼= 0 (k > 1) and the induction

hypothesis, we find

W
β|µν|αρ
k+1 = ∂γφ

γβ|µν|αρ
k+1 + δ(. . .) (4.37)

where φ
γβ|µν|αρ

k+1 is invariant, antisymmetric in (γ, β) and possesses the symmetries of the

Weyl tensor in its last four indices. The δ-exact term is invariant as well. Then, projecting
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the invariant tensor 4φ
γβ|µν|αρ

k+1 on the symmetries of the curvature tensor Kγβ|µν|αρ and

calling the result Ψ
γβ|µν|αρ
k+1 which is of course invariant, we find after some rather lengthy

algebra (which takes no time using Ricci [37])

Y ′µνρ
k+1 = ∂α∂β∂γΨ

αµ|βν|γρ
k+1 + Gµνρ

αβγX̂αβγ
k+1 + δ(. . .) , (4.38)

with

X̂αβγ|k+1 :=
2

n − 2
Yστρ

αβγ

(
− Sµ

σ|µτ |ρ k+1 +
1

n
ηστ [S µν

µν| |ρ k+1 + S µ ν

µν| ρ| k+1]
)

(4.39)

where Yστρ
αβγ = Y

(στρ)
(αβγ) projects on completely symmetric rank-3 tensors.

(iii) We can now complete the argument. The homotopy formula

ak =

∫ 1

0
dt

[

C∗
αβ

δLak

δC∗
αβ

+ h∗
µνρ

δLak

δh∗
µνρ

+ hµνρ
δLak

δhµνρ

]

(th , th∗ , tC∗) (4.40)

enables one to reconstruct ak from its E.L. derivatives. Inserting the expressions (4.27)-

(4.29) for these E.L. derivatives, we get

ak = δ
( ∫ 1

0
dt [C∗

αβZ ′αβ
k−1 + h∗

µνρX
′µνρ
k + hµνρY

′µνρ
k+1 ](t)

)
+ ∂ρk

ρ. (4.41)

The first two terms in the argument of δ are manifestly invariant. To prove that the

third term can be assumed to be invariant in eq. (4.41) without loss of generality, we use

eq. (4.38) to find that

hµνρ Y ′µνρ
k+1 = −Ψ

αµ|βν|γρ
k+1 Kαµ|βν|γρ + GαβγX̂αβγ

k+1 + ∂ρ`
ρ + δ(. . .) ,

where we integrated by part thrice to get the first term of the r.h.s. while the hermiticity

of Gµνρ|αβγ was used to obtain the second term.

We are left with ak = δµk+1+∂ρν
ρ
k , where µk+1 is invariant. That νρ

k can now be chosen

invariant is straightforward. Acting with γ on the last equation yields ∂ρ(γνρ
k) = 0 . By

the Poincaré lemma, γνρ
k = ∂σ(τ

[ρσ]
k ) . Furthermore, Proposition 3 on H(γ| d) for positive

antighost number k implies that one can redefine νρ
k by the addition of trivial d-exact

terms such that one can assume γνρ
k = 0 . As the pureghost number of νρ

k vanishes, the

last equation implies that νρ
k is an invariant polynomial.

5. Computation of deformations

As explained in section 3.1, nontrivial consistent interactions are in one-to-one correspon-

dance with elements of Hn,0(s|d), i.e. solutions a of the equation

sa + db = 0 , (5.1)

with form-degree n and ghost number zero, modulo the equivalence relation

a ∼ a + sp + dq .
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Quite generally, one can expand a according to the antifield number, as

a = a0 + a1 + a2 + · · · ak , (5.2)

where ai has antifield number i. The expansion stops at some finite value of the antifield

number by locality, as was proved in [36].

Let us recall [21] the meaning of the various components of a in this expansion. The

antifield-independent piece a0 is the deformation of the Lagrangian; a1, which is linear in

the antifields h∗µνρ, contains the information about the deformation of the gauge symme-

tries, given by the coefficients of h∗µνρ; a2 contains the information about the deformation

of the gauge algebra (the term C∗CC gives the deformation of the structure functions ap-

pearing in the commutator of two gauge transformations, while the term h∗h∗CC gives the

on-shell closure terms); and the ak (k > 2) give the informations about the deformation of

the higher order structure functions and the reducibility conditions.

In fact, using the previous cohomological theorems and standard reasonings (see e.g.

[22]), one can remove all components of a with antifield number greater than 2. The key

point is that the invariant characteristic cohomology Hn,inv
k (δ|d) controls the obstructions

to the removal of the term ak from a and that all Hn,inv
k (δ|d) vanish for k > 2 by Proposition

4 and Theorem 3. This proves the first part of the following theorem:

Theorem 4. Let a be a local top form which is a nontrivial solution of the equation (5.1).

Without loss of generality, one can assume that the decomposition (5.2) stops at antighost

number two, i.e.

a = a0 + a1 + a2 . (5.3)

If the last term a2 is parity and Poincaré invariant, then it can always be written as

the sum of

a2
2 = fa

bc C∗µν
a

(
T b

µα|βT c
να|β − 2T b

µα|βT c
νβ|α +

3

2
Cb αβU c

µα|νβ

)
dnx (5.4)

and

a4
2 = ga

bc C∗µν
a U b

µα|βλU c
να|βλ dnx , (5.5)

where fa
bc and ga

bc are some arbitrary constant tensors that are antisymmetric under the

exchange of b and c. Notice that a4
2 vanishes when n = 4 .

This most general parity and Poincaré invariant expression for a2 is computed in section

5.1.

Let us note that the two components of a2 do not contain the same number of deriva-

tives: a2
2 and a4

2 contain respectively two and four derivatives. This implies that a2
2 and

a4
2 lead to Lagrangian vertices with resp. three and five derivatives. The first kind of

deformation (three derivatives) was studied in [6], however the case with five derivatives

has never explicitly been considered before in flat space-time analyzes.
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Similarly to (5.3), one can assume b = b0 + b1 . Inserting the expansions of a and b into

(5.1) and decomposing s as s = δ + γ yields

γa0 + δa1 + db0 = 0 , (5.6)

γa1 + δa2 + db1 = 0 , (5.7)

γa2 = 0 . (5.8)

The general solution of (5.8) is given by Proposition 1. The computation of a2 follows from

the results obtained in sections 4.4-4.6, applied to the equation (5.7).

Another consequence of the different number of derivatives in a2
2 and a4

2 is that the

descents associated with both terms can be studied separately. Indeed, the operators

appearing in the descent equations (5.6)-(5.8) are all homogeneous with respect to the

number of derivatives, which means that one can split a into eigenfunctions of the operator

counting the number of derivatives and solve the equations separately for each of them. In

the sequel we thus split the analysis: the descent starting from a2
2 is analysed in section

5.2, while the descent associated with a4
2 is treated in section 5.3.

5.1 Most general term in antighost number two

The equation (5.8) implies that, modulo trivial terms, a2 = αIω
I , where αI is an invariant

polynomial and the {ωI} provide a basis of the polynomials in Cµν , T̂µνρ, Ûµνρσ (see section

4.3). Let us stress that, as a2 has ghost number zero and antifield number two, ωI must

have ghost number two.

Acting with γ on (5.7) and using the triviality of d, one gets that b1 should also be

an element of H(γ), i.e., modulo trivial terms, b1 = βIω
I , where the βI are invariant

polynomials.

Let us further expand a2 and b1 according to the D-degree defined in the proof of

Proposition 3 in section 4.4 :

a2 =
M∑

i=0

ai
2 =

M∑

i=0

αIi
ωIi , b1 =

M∑

i=0

bi
1 =

M∑

i=0

βIi
ωIi ,

where ai
2, bi

1 and ωIi have D-degree i. The equation (5.7) then reads
∑

i

δ[αIi
ωIi ] +

∑

i

D[βIi
ωIi ] = γ(. . .) ,

or equivalently
∑

i

δ[αIi
]ωIi +

∑

i

D0[βIi
]ωIi +

∑

i

βIi
AIi

Ii+1
ωIi+1 = γ(. . .) ,

where AIi

Ii+1
ωIi+1 = DωIi , which implies

δ[αIi
] + D0[βIi

] + βIi−1
A

Ii−1

Ii
= 0 (5.9)

for each D-degree i, as the elements of the set {ωI} are linearly independent nontrivial

elements of H(γ).

D-degree decomposition:
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• degree zero : In D-degree 0, the last equation reads δ[αI0 ] + D0[βI0 ] = 0, which

implies that αI0 belongs to H2(δ|d). In antifield number 2, this group has nontrivial

elements given by Proposition 5, which are proportional to C∗µν
a . The requirement of

translation-invariance restricts the coefficient of C∗µν
a to be constant. Indeed, it can

be shown [39] that if the Lagrangian deformation a0 is invariant under translations,

then so are the other components of a. On the other hand, in D-degree 0 and ghost

number 2, we have ωI0 = Cb
µρC

c
νσ. To get a parity and Lorentz-invariant a0

2, ωI0 must

be completed by multiplication with C∗µν
a and some parity-invariant and covariantly

constant tensor, i.e. a product of ηµν ’s. The only a0
2 that can be thus built is

a0
2 = C∗µν

a Cb
µρC

cρ
ν fa

bcd
nx, where fa

bc is some constant tensor that parametrizes the

deformation. From this expression, one computes that b0
1 = βI0ω

I0 = −3 (h∗µνα
a −

1
n
ηµνh∗α

a )Cb
µρC

cρ
ν fa

bc ∗ (dxα) , where ∗(dxα) = 1
(n−1)!εαµ1...µn−1

dxµ1 . . . dxµn−1 .

• degree one : We now analyse eq. (5.9) in D-degree 1, which reads

δ[αI1 ] + D0[βI1 ] + βI0A
I0
I1

= 0 . (5.10)

The last term can be read off βI0A
I0
I1

ωI1 ∝ (h∗µνα
a − 1

n
ηµνh∗α

a )fa
bcd

nx T̂ b
α(µ|ρ)C

cρ
ν , and

should be δ-exact modulo D0 for a solution of (5.10) to exist. However, the coef-

ficient of T̂ b
α(µ|ρ)C

cρ
ν is not δ-exact modulo D0. This is easily seen in the space of

x-independent functions, as both δ and D0 bring in one derivative while the coeffi-

cient contains none. As βI0 is allowed to depend explicitely on xµ, the argument is

actually slightly more complicated: one must expand βI0 according to the number

of derivatives of the fields in order to reach the conclusion. The detailed argument

can be found in the proof of Theorem 7.3 in Ref. [38]. As βI0A
I0
I1

is not δ-exact

modulo D0, it must vanish if (5.10) is to be satisfied. This implies that fa
bc vanishes,

so that a0
2 = 0 and b0

1 = 0 . One thus gets that αI1 is an element of H2(δ|d). However,

there is no way to complete it in a Poincaré-invariant way because the only ωI1 is

ωI1 = T̂ b
µν|ρC

c
αβ, which has an odd number of Lorentz indices, while αI1 ∝ C∗µν

a has

an even number of them. Thus a1
2 = 0 = b1

1.

• degree two : The equation (5.9) in D-degree 2 is then δ[αI2 ] + D0[βI2 ] = 0, which

implies that αI2 belongs to H2(δ|d). One finds, most generally when n > 3, that

a2
2 = C∗µν

a (T̂ b
µα|β T̂ cα|β

ν fa
[bc] + T̂ b

µα|β T̂ cβ|α
ν ga

[bc] + CbαβÛ c
µα|νβka

bc)d
nx ,

b2
1 = −3 (h∗µνρ

a −
1

n
ηµνh∗ρ

a )(T̂ b
µα|β T̂ c

να|βfa
[bc] + T̂ b

µα|βT̂ c
νβ|αga

[bc] + CbαβÛ c
µα|νβka

bc) ∗

∗(dxρ) ,

where fa
[bc], ga

[bc] and ka
bc are three a priori independent constant tensors.

• degree three : Now, in the equation for a3
2, we have

βI2A
I2
I3

ωI3 ∝

∝
[
h∗µνρ

a Û b
µα|ρβT̂ c α|β

ν (fa
[bc] + ga

[bc] −
2

3
ka

cb) −
1

n
h∗ρ

a Û b
µα|ρβ T̂ cµα|β(fa

[bc] +
1

2
ga
[bc])

]
dnx ,
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which implies, when n > 3, that ga
[bc] = −2 fa

[bc] and ka
bc = 3

2 fa
[bc] , since the coefficients

of Û b
µα|ρβ

T̂
c α|β
ν and Û b

µα|ρβ
T̂

c α|β
µ are not δ-exact modulo D0 . All this proves equa-

tion (5.4), which is the expression a2
2 found here modulo trivial terms. Provided that

the above conditions are satisfied, αI3 must be in H2(δ|d). But no Poincaré-invariant

a3
2 can be built because ωI3 = T̂ b

µα|βÛ c
νρ|στ

has an odd number of Lorentz indices, so

a3
2 = 0.

• degree four : Repeating the same arguments for a4
2, one gets a4

2 = ga
bc C∗µν

a

Û b
µα|βλ

Û
cα|βλ
ν dnx and b4

1 = −3 (h∗µνρ
a − 1

n
ηµνh∗ρ

a )Û b
µα|βλ

Û
cα|βλ
ν ga

bc ∗ (dxρ) , for some

constant structure function ga
bc. It is important to notice that a4

2 vanishes in dimen-

sion n = 4 because of the Schouten identity 0 ≡ C∗ν1
µ1

Û b ν2ν3

µ2µ3|
Û c ν4ν5

µ4µ5|
δ
[µ1

[ν1
. . . δ

µ5]
ν5]

∝

C∗µνÛ b
µα|βλ

Û c
να|βλ

. No condition is imposed on ga
bc by equations in higher D-degree

because D1b
4
1 = 0. This proves equation (5.5).

• degree > 4 : Finally, there are no ai
2 for i > 4 because there is no ghost combination

ωIi of ghost number two and D-degree higher than four.

Summarizing, we have proved the second part of Theorem 4.

5.2 Berends–Burgers–van Dam’s deformation

In this section, we consider the deformation related to a2
2 given by (5.4). As explained above,

a2 = a2
2 must now be completed into a solution a of sa + db = 0 by adding terms with

lower antifield number. The complete solution a provides then the first-order deformation

term W1 =
∫

a of an interacting theory. The next step is to check that higher order terms

W2, W3, etc. can be built to get the full interacting theory.

In the case considered here, we show that a first-order interaction term W1 can be

constructed; however, there is an obstruction to the existence of W2, which prevents its

completion into a consistent interacting theory.

5.2.1 Existence of a first-order deformation

In this section, the descent equations (5.6) and (5.7), i.e. γa0 + δa1 + db0 = 0 and γa1 +

δa2 + db1 = 0, are solved for a1 and a0.

The latter of these equations admits the particular solution

ap
1 = −

3

2

[
(h∗µνρ

a −
1

n
ηµνh∗ρ

a )
(
2∂[µhb

α]βρ(T
c
να|β − 2T c

νβ|α)+hb
αβρU

c
µα|νβ−3Cbαβ∂[νh

c
β]ρ[α,µ]

)

+
1

n
h∗ρ

a T b
ρα|β(∂σhc σαβ − ∂αhc β − ∂βhc α)

]
fa

bc dnx .

To this particular solution, one must add the general solution ā1 of γā1 + db1 = 0 , or

equivalently (by Proposition 3) of γā1 = 0. In ghost number zero, antifield number one

and with two derivatives, this solution is, modulo trivial δ-, γ- and d-exact terms,

ā1 = h∗ a
µνρG

b µν
σ Cc ρσl1(ab)c + h∗a

µ Gb
νCc µν l2(ab)c + h∗a µGb

µνρC
c νρl3abc ,
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where l1(ab)c, l2(ab)c and l3abc are some arbitrary constants. For future convenience, we also

add to ap
1 + ā1 the trivial term γb1 where

b1 = fa
bch

∗
aµνρ

(
−

3

2
hbµστ∂νhcρ

στ−2hbµστ ∂σhcνρ
τ +3hbµ∂νhcρ−3hb

σ∂µhcνρσ+2hb
σ∂σhcµνρ

)
+

+fabch
∗a
µ (2hbµνρ∂νhc

ρ − hbµνρ∂σhc
νρσ + 3hbµ∂σhc

σ −
1

2
hb

νρσ∂µhcνρσ + 6hb
ν∂ρh

cµνρ) .

In short, up to trivial terms, the most general a1, solution of γa1 + δa2 + db1 = 0, is

a1 = ap
1 + ā1 + γb1 .

The next step is to find a0 such that γa0 + δa1 + db0 = 0 . A cumbersome but straight-

forward computation shows that necessary (and, as we will see, sufficient) conditions for a

solution a0 to exist are (i) fa
[bc] is totally antisymmetric, or more precisely δadf

d
[bc] = f[abc],

(ii) l1(ab)c = l2(ab)c = 0 and (iii) l3abc = −9
8f[abc] . This computation follows the lines of an argu-

ment developped in [22], which considers the most general a0 and matches the coefficients

of the terms with the structure Ch′h′, where h′ denotes the trace of h. In four dimensions,

one must take into account that some of these terms are related by Schouten identities;

however, this does not change the conclusions. Once the conditions (i) to (iii) are satisfied,

one can explicitly build the solution a0, which corresponds to the spin-3 vertex found in [6]

in which the structure function fabc has been replaced by −3
8fabc . The deformation a0 of

the Lagrangian can be found in the appendix A. It is unique up to solutions ā0 of the

homogeneous equation γā0 + db0 = 0 .

We have thus proved by a new method that the spin-3 vertex of [6] is the only consistent

nontrivial first-order deformation of the free spin-3 theory with at most7 three derivatives in

the Lagrangian, modulo deformations ā0 of the latter that are gauge-invariant up to a total

derivative, i.e. such that γā0 + db0 = 0 . However, as is known from [9], this deformation

cannot be completed to all orders, as is proved again in the next section.

5.2.2 Obstruction for the second-order deformation

In the previous section, we have constructed a first-order deformation W1 =
∫

(a0+a1+a2)

of the free functional W0 . As explained in section 4.2, a consistent second-order deformation

W2 must satisfy the condition

(W1,W1)a.b. = −2sW2 . (5.11)

Expanding (W1,W1)a.b. according to the antifield number, one finds

(W1,W1)a.b. =

∫
dnx (α0 + α1 + α2) ,

where the term of antifield number two α2 comes from the antibracket of a2 with itself.

If one also expands W2 according to the antifield number, one gets from (5.11) the

following condition on α2 (it is easy to see that the expansion of W2 can be assumed to

7The developments above prove the three-derivatives case. For less derivatives, it follows from above

that a2 = 0, which implies that γa1 = 0 by (5.7); however there is no such parity and Poincar-invariant

nontrivial a1 with less than two derivatives, so a1 = 0 as well.
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stop at antifield number three, W2 =
∫

dnx(c0 + c1 + c2 + c3) and that c3 may be assumed

to be invariant, γc3 = 0)

α2 = −2(γc2 + δc3) + ∂µbµ
2 . (5.12)

Explicitly,

α2 = 1
2fabcf

c
deC

∗a
µν (−4T̂ bµα|β T̂ dνρ|σÛ e

αρ|βσ + 5T̂ bµα|βT̂ dνρ|σÛ e
ασ|βρ − 3T̂ bµα|β T̂ d

αρ|σÛ
eσν|ρ

β

+T̂ bµα|βT̂ d
βρ|σÛ eρν|σ

α + T̂ bµα|β T̂ d
βρ|σÛ eσν|ρ

α −
3

2
Û bµα|νβT̂ d

αρ|σT̂
e ρ|σ
β

+3Û bµα|νβ T̂ d
αρ|σT̂

e σ|ρ
β +

9

4
Û bµα|νβCdρσÛ e

ασ|βρ +
3

2
Cb

αβÛdρµ|σαÛ e ν|β
ρ σ

−
3

4
Cb

αβÛdρµ|σαÛ e ν|β
σ ρ +

3

4
CbαβÛd

ρα|σβÛ eρµ|σν) + γ(. . .) .

It is impossible to get an expression with three ghosts, one C∗ and no fields, by acting with

δ on c3, so we can assume without loss of generality that c3 vanishes, which implies that

α2 should be γ–exact modulo total derivatives.

However, α2 is not a mod-d γ-coboundary unless it vanishes. Indeed, suppose we have

α2 = γ(u) + ∂µkµ .

Both u and kµ have antifield number two and we can restrict ourselves to their components

linear in C∗ without loss of generality (so that the gauge algebra closes off-shell at second

order). We can also assume that u contains C∗ undifferentiated, since derivatives can be

removed through integration by parts. As the Euler derivative of a divergence is zero, we

can reformulate the question as to whether the following identity holds,

δLα2

δC∗a
µν

=
δL(γu)

δC∗a
µν

= −γ
( ∂Lu

∂C∗a
µν

)
.

since γC∗ = 0 and C∗ appears undifferentiated in u. On the other hand, δLα2

δC∗a
µν

is a sum of

nontrivial elements of H(γ); it can be γ-exact only if it vanishes. Consequently, a necessary

condition for the closure of the gauge transformations (c2 may be assumed to be linear in

the antifields) is α2 = 0.

Finally, α2 vanishes if and only if fabcf
c
de = 0 (nilpotency of the algebra) or n = 3 ,

which implies when n > 3 the vanishing of fabc (by Lemma 1), and thus of the whole

deformation candidate.

Let us note that originally, in the work [9], the obstruction to this first-order deforma-

tion appeared under the weaker form fabcf
c
de = fadcf

c
be (associativity) and was obtained

by demanding the closure of the algebra of gauge transformations at second order in the

deformation parameter.

5.3 Five-derivative deformation

We now consider the deformation related to a2 = a4
2, written in equation (5.5). In this

case, the general solution a1 of γa1 + δa2 + db1 = 0 is, modulo trivial terms,

a1 = −2 (h∗µνρ
a −

1

n
ηµνh∗ρ

a )∂[µhb
α]ρ[β,λ]U

cα|βλ
ν ga

[bc] d
nx + ā1 , (5.13)
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where ā1 is an arbitrary element of H(γ) .

When the structure constant is completely antisymmetric in its indices, a Lagrangian

deformation a0 such that γa0 + δa1 + db0 = 0 can be computed. However, its expression is

quite long and is therefore to be found in the appendix B. We used the symbolic manipu-

lation program FORM [40] for its computation. This nontrivial first-order deformation of

the free theory had not been found in the previous spin-three analyzes in Minkowski space-

time, which is related to the assumption usually made that the Lagrangian deformation

should contain at most three derivatives, while it contains five of them in this case.

However, it would be very interesting to see whether the cubic vertex written in Ap-

pendix B could be related to the flat space limit of the higher-spin vertices of the second

reference of [18]. At first order in the deformation parameter, it might be possible to take

some flat space-time and free limit of the (A)dSn higher-spin cubic vertices. A very appro-

priate free limit must indeed be taken: the dimensionless coupling constant g of the full

higher-spin gauge theory should go to zero in a way which compensates the non-analyticity

∼ 1/Λm in the cosmological constant Λ of the cubic vertices, i.e. such that the ratio g/Λm

is finite. The spin-3 vertices could then be recovered in such appropriate limits from the

action of [41] by substituting the linearized spin-3 field strengths for the nonlinear ones at

quadratic order and replacing the auxiliary and extra connections by their expressions in

terms of the spin-3 gauge field obtained by solving the linearized torsion-like constraints, as

explained in [2, 3, 18] (and references therein). Such a relation would provide a geometric

meaning for the complicated expression of Appendix B.

The next step is to find the second order components of the deformation. Similarly

to the previous case, it can easily be checked that we can assume c3 = 0. However, no

obstruction arises from the constraint α2 ≡ (a2, a2) = −2γc2 + ∂mkµ. If this candidate for

an interacting theory is obstructed, the obstructions should arise at some later stage, i.e.

beyond the (possibly on-shell) closure of the gauge transformations.

For completeness, one should check if γa0 + δa1 + db0 = 0 admits a solution a0 when

the structure constant gd
bc = gd

[bc] is not completely antisymmetric but has the “hook”

symmetry property δ
d[ag

d
bc] = 0. However, the computations involved are very cumbersome

and we were not able to reach any conclusion about the existence of such an a0.

6. Conclusions and perspectives

In this paper we carefully analyzed the problem of introducing consistent interactions

among a countable collection of spin-3 gauge fields in flat space-time of arbitrary dimension

n > 3 . For this purpose we used the powerful BRST cohomological deformation techniques

in order to be as exhaustive as possible. Under the sole assumptions of locality, parity

invariance, Poincaré invariance and perturbative deformation of the free theory, we proved

that only two classes of non-abelian gauge symmetries are consistent at first order. They

close off-shell and are entirely characterized by the structure constants of some internal

anticommutative algebra (as for Yang-Mills’s theories). When these constant tensors are

completely antisymmetric (this is possible only for a set of different massless spin-3 fields),

there exist actions that are invariant at first order under the non-Abelian gauge symmetries.
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The first deformation corresponds to the well-known Berends–Burgers–van Dam cubic

vertex which involves three derivatives of the fields and becomes inconsistent at second

order. The second deformation is defined for n > 4 and corresponds to a cubic vertex

that involves five derivatives. There are some indications that this deformation could be

obtained from an appropriate flat-space limit of the nonlinear (A)dSn higher-spin gauge

theory of Ref. [2].

The antisymmetry condition gabc = g[abc] on the structure constant of the second defor-

mation is only sufficient for the existence of the vertex. It would be interesting to establish

whether a constant tensor ga
[bc] with the “hook” symmetries δd[ag

d
bc] = 0 might not also

give rise to a consistent first-order vertex. If this first-order non-abelian deformation turned

out to exist, then there would be no other one, under the assumptions stated above. The

relaxation of the parity symmetry requirement and the special case n = 3 also deserve

more study [42].

Moreover, it would be of prime importance to investigate whether the second first-order

consistent deformation could be extended to higher orders in the deformation parameter.

At second order, a first test has been passed where the Berends–Burgers–van Dam vertex

fails, but unfortunately the lengthy nature of the five-derivative cubic vertex makes further

analysis very tedious.

Last but not least, it would be of interest to enlarge the set of fields to spin 2, 3

and 4 and see if this allows to remove the previous obstruction at order two. A hint that

this might be sufficient comes from the fact that the commutator of two spin-3 generators

produces spin-2 and spin-4 generators for the bosonic higher-spin algebra of Ref. [2].
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In this appendix, we provide the lagrangian deformations a0 for the first-order interac-

tions found in section 5, as well as the first-order deformation of the gauge transformations

for the Berends-Burgers-van Dam vertex.

A. Three-derivative vertex

The deformation ∫
a0 = f[abc] S

abc ; Sabc[hd
µνρ] = −

3

8

∫
Labc

BBvD dnx

related to the element a2
2 of section 5.2 is the Berends–Burgers–van Dam cubic vertex

Labc
BBvD = −

3

2
haαhbβ, γhc

β, αγ + 3 haα, βhbγhc
γ, αβ + 6 haαβγ, δhb

αhc
β, γδ +

1

2
haαhbβγδ, εhc

βγδ,αε
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+haα
, αβhb

γδεh
cγδε, β + haα, βhbγδεhc

γδε, αβ − 3 ha
αβγhbαβ

δ, εh
cδ, γε − 3 ha

αβγhbαβδ, γεhc
δ, ε

+3 ha
αβγ, δh

bαβεhc , γδ
ε + 3 ha , γδ

αβγ hbαβεhc
ε, δ −

9

4
ha

α, βγhbβhcγ, α −
1

4
ha

α, βhbβ, γhc , α
γ

−3 ha
αβγhbδ, αhc , βγ

δ −
3

2
ha , α

α hbβ, γhc , δ
βγδ + 3 ha

αhb
β, γhc βγ, αδ

δ +
3

2
ha , αβ

α hbγ, δhc
βγδ

+3 ha
α, βhb

γ, δh
cβγδ,α −

3

2
ha

αhb , β
βγδ hc γδ, αε

ε − 6 ha , αδ
αβγ hbβ, εhc

δε
γ

+6 ha , αδ
αβγ hbβhc γ, ε

δε − 2 ha
αβγ, δh

b αδ, ε
λ hc λβ,γ

ε + ha
αβγhb , α

δελ hc δελ, βγ

−3 ha
αβγ

, αhb βγ, ε
δ hc

ελ
δ, λ + 3 ha , αδ

αβγ hbβγε, λhc
εδλ + 6 ha

αβγ, δh
bαβε, λhc

ελ
δ, γ ,

where we remind that indices after a coma denote partial derivatives.

The first-order deformation of the gauge transformations is given by

δ1
λha

µνρ = fa
bc Φbc

µνρ ,

where Φbc
µνρ is the completely symmetric component of

φbc
µνρ = 6hbσλc

µσ,νρ − 3hbσλc
µν,ρσ + 6hb

µ,νλc ,σ
σρ − 6hb

µλc σ
σν,ρ −

15

4
hb

µστ,νλcσ,τ
ρ

+
31

4
hbστ

µ λc
νσ,τρ +

9

4
hb

µνσ,ρτλcστ −
11

2
hb σ,τ

µν λc
σ(τ,ρ)

−6hb
µνσ,ρλ

cστ
,τ −

3

4
hb

µστ,νλcστ
,ρ −

9

8
hb

µστ,νρλ
cστ +

9

8
hbστ

µ λc
στ,νρ

−
1

2
hb

µνσ,τλcτ,σ
ρ +

13

8
hbστ

µ λc
νρ,στ + 4hb

µνρ,σλcστ
,τ −

9

8
hb ,στ

µνρ λc
στ

+ηµν

( 9

4
(hbσ,τ

τλ
c
ρσ − hb

σ,ρτλcστ − hb ,ησ
ηστ λcτ

ρ ) +
9

8
(hb ,στ

σ λc
ρτ + hbηστ

,ηρλ
c
στ )

+6 (hb ,σ
σ λc ,τ

ρτ − hbσλc τ
στ,ρ − hbσλc τ

σρ,τ − hb
σλc ,στ

ρτ − hb
ρλ

c ,στ
στ + 2hb ,σ

ρστ λcτ,η
η )

+
3

2
(hbηστ λc

στ,ηρ − hb
ηστ,ρλ

c στ,η) + (1 −
3

4n
)(2hbσ,τ λc

στ,ρ − hbστ,η
η λc

στ,ρ)

+(2 +
3

4n
)(hb

σ,τ λcσ,τ
ρ + hb

σ,τλcτ,σ
ρ − hbτη,σ

σ λc
ρτ,η − hb

ρστλcσ,τη
η +

1

2
hbστ

ρ λc η
στ,η )

+
9

8
(1 −

1

n
)(−hb η

ρστ,η λcστ + 2hb τ,ησ
ρσ λc

ητ − hb ,στ
ρ λc

στ )
)

.

This expression is equivalent to that of [6] modulo field redefinitions.

B. Five-derivative vertex

In this appendix, we give the deformation a0 related to the element a4
2 of section 5.3 with

completely antisymmetric structure constants. It satisfies the equation γa0 + δa1 +db0 = 0

for a1 defined by (5.13), in which ā1 = 0. The deformation is

∫
a0 = g[abc] Tabc ; Tabc[h

d
µνρ] =

1

2

∫
Labc dnx

where

Labc =
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hµνρ
a

„

−
7

4
∂µνh

λστ
b ∂ρστhcλ−

1

4
∂µνh

λστ
b ∂ρη∂

η
hcλστ−

1

2
∂µνh

λ
b ∂ρλσh

σ
c −

3

4
∂µνh

λ
b ∂ρστh

στ
cλ

−
5

3
∂µh

λστ
b ∂νρληh

η
cστ + 1

2
∂µh

λστ
b ∂νρη∂

η
hcλστ + 2

3
∂µh

λ
b ∂νρστh

στ
cλ −

4

3
∂µh

λ
b ∂νρσ∂

σ
hcλ

+5

4
∂στh

στλ
b ∂µνρhcλ−

5

3
∂στh

σλη
b ∂µνρh

τ
cλη+ 3

4
∂σ∂

σ
h

λητ
b ∂µνρhcλητ + 1

2
∂στh

σ
b ∂µνρh

τ
c

+23

12
∂στh

λ
b ∂µνρh

στ
cλ −

4

3
∂σ∂

σ
h

λ
b ∂µνρhcλ−

51

16
∂µνhbρ∂στ∂

σ
h

τ
c −

11

8
∂µh

στ
bν ∂ρστλh

λ
c

+5

4
∂µhbνστ∂ρλη∂

τ
h

σλη
c −

3

8
∂µhbνστ∂ρλ∂

λτ
h

σ
c + 9

4
∂µhbνστ∂ρλη∂

η
h

στλ
c −

1

12
∂µhbν∂ρλστh

λστ
c

−
3

2
∂µhbν∂ρλσ∂

σ
h

λ
c −

11

16
∂λh

στ
bµ ∂νρστh

λ
c −

1

4
∂ληhbµστ∂νρ∂

τ
h

λησ
c + 3

4
∂λ∂

λ
h

τ
bµσ∂νρτh

σ
c

+7

4
∂ηλhbµ∂νρ∂

η
h

λ
c −

19

16
∂η∂

η
hbµ∂νρλh

λ
c + 11

4
∂µλh

λσ
bν ∂στηh

τη
cρ + 3

4
∂µhbνστ∂

στλη
hcρλη

+7

8
∂µhbνστ∂

στλ
∂λhcρ+ 3

2
∂µhbνστ ∂

σλ
∂ληh

τη
cρ − ∂µhbνστ∂

λη
∂ληh

στ
cρ + ∂µhbν∂λ∂

λστ
hcρστ

+7

4
∂

σ
hbµστ ∂

τλη
∂νhcρλη−

9

8
∂

σ
hbµστ∂

τλ
∂νλhcρ+ 1

4
∂

λ
h

στ
bµ ∂νστηh

η
cρλ−

3

4
∂

λ
h

στ
bµ ∂νστλhcρ

+2 ∂
λτ

hbµλσ∂ντηh
ση

cρ −
1

4
∂τhbµλσ∂νη∂

λη
h

στ
cρ + 3

4
∂

τ
h

λ
bµσ∂νλτηh

ση
cρ + ∂

λ
hbµστ∂νλη∂

η
h

στ
cρ

−
1

4
∂

στ
hbµστ∂η∂

ηλ
hcνρλ−

3

4
∂

σ
hbµστ∂η∂

τηλ
hcνρλ+ 3

4
∂

λ
hbµστ ∂η∂

στη
hcνρλ

+3

2
∂λhbµστ ∂

λστη
hcνρη−

1

4
∂

λ
hbµ∂στ∂

στ
hcνρλ+ 3

4
∂

λ
hbµλη∂στ∂

στ
h

η
cνρ+ 3

2
∂στhbµλη∂

λστ
h

η
cνρ

+1

3
∂µhbνρλ∂

λστη
hcστη−

15

4
∂µhbνρλ∂

λστ
∂σhcτ −

11

4
∂µhbνρλ∂

στη
∂σh

λ
cτη

+1

2
∂µhbνρλ∂

στ
∂στh

λ
c + 1

2
∂ηhbµνλ∂

λ
∂ρστh

ηστ
c −

1

2
∂ηhbµνλ∂

λσ
∂ρσh

η
c

−∂σhbµνλ∂
λσ

∂ρηh
η
c −

3

4
∂

η
∂ηhbµνλ∂ρστh

λστ
c + 1

2
∂

στ
hbµνλ∂ρστh

λ
c + 7

4
∂

λ
hbµνλ∂ηστ∂

η
h

στ
cρ

−
1

4
∂

λ
hbµνλ∂στ∂

στ
hcρ−

3

2
∂

η
hbµνλ∂σ∂

λστ
hcρητ −2 ∂ηhbµνλ∂

ηλστ
hcρστ

+1

2
∂ηhbµνλ∂

ηλσ
∂σhcρ+ 1

4
∂ηhbµνλ∂

στ
∂στh

ηλ
cρ + 1

2
∂ηhbµνλ∂

ηστ
∂σh

λ
cρτ −

1

4
∂ηhbµνρ∂λστ∂

λ
h

ηστ
c

−
3

8
∂ηhbµνρ∂λσ∂

λσ
h

η
c −

1

2
∂ηhbµνρ∂

ηλ
∂λσh

σ
c −

27

16
∂µνhbλ∂

λστ
hcρστ + 15

16
∂µνhbλ∂

λσ
∂σhcρ

−
1

8
∂µνhbλ∂

σ
∂σηh

λη
cρ + 1

3
∂µh

λστ
b ∂νλστhcρ+ 1

2
∂µλh

λ
b ∂νσ∂

σ
hcρ−

33

16
∂µh

λ
b ∂νλστh

στ
cρ

−
23

4
∂µ∂

σ
h

λ
b ∂νλσhcρ+ 5

8
∂µh

λ
b ∂νσ∂

στ
hcρλτ −3 ∂µh

λστ
b ∂νλη∂

η
hcρστ −

1

4
∂λh

λστ
b ∂µνστhcρ

−
3

2
∂

λσ
hbλ∂µν∂

τ
hcρστ + 11

4
∂

λσ
hbλ∂µνσhcρ−

15

16
∂

στ
h

λ
b ∂µνλhcρστ + 43

16
∂

σ
∂σh

λ
b ∂µνλhcρ

−
11

4
∂

στ
h

λ
b ∂µνσhcρλτ + 19

8
∂

σ
∂σh

λ
b ∂µντh

τ
cρλ+ 9

4
∂ηλh

ηστ
b ∂µνσh

λ
cρτ + 3

4
∂ηh

λστ
b ∂µνστh

η
cρλ

+15

4
∂λh

λστ
b ∂µνη∂

η
hcρστ −3 ∂

η
h

λστ
b ∂µνηλhcρστ −

1

2
∂µhbλστ∂

λστη
hcνρη−

19

4
∂µhbλ∂

λση
∂σhcνρη

+1

2
∂µh

λ
b ∂

στ
∂στhcνρλ−

5

2
∂µ∂

η
h

λστ
b ∂ηστhcνρλ−

21

4
∂µh

λστ
b ∂

η
∂ηστhcνρλ+ 1
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∂λh
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b ∂µστ∂

η
hcνρη
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h
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hcνρσ
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D = 6 space-time, Phys. Lett. B 309 (1993) 39; Cubic interaction vertices for higher spin

fields, hep-th/9705048.

[17] C. Aragone and S. Deser, Consistency problems of hypergravity, Phys. Lett. B 86 (1979) 161;

F. A. Berends, J. W. van Holten, B. de Wit and P. van Nieuwenhuizen, J. Phys. A 13 (1980)

1643;

C. Aragone and H. La Roche, Massless second order tetradic spin 3 fields and higher helicity

bosons, Nuovo Cim. A72 (1982) 149;

S. Deser and Z. Yang, Inconsistency of spin 4-spin-2 gauge field couplings, Class. and Quant.

Grav. 7 (1990) 1491.

[18] E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin

fields, Phys. Lett. B 189 (1987) 89; Cubic interaction in extended theories of massless higher

spin fields, Nucl. Phys. B 291 (1987) 141;

M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS5, Nucl. Phys. B

616 (2001) 106 [hep-th/0106200];

K.B. Alkalaev and M.A. Vasiliev, N = 1 supersymmetric theory of higher spin gauge fields in

AdS5 at the cubic level, Nucl. Phys. B 655 (2003) 57 [hep-th/0206068].

[19] S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and

Einstein’s equations, Phys. Rev. B 988 (1965) 138.

[20] G. Barnich and M. Henneaux, Consistent couplings between fields with a gauge freedom and

deformations of the master equation, Phys. Lett. B 311 (1993) 123 [hep-th/9304057].

[21] M. Henneaux, Consistent interactions between gauge fields: the cohomological approach,

Contemp. Math. 219 (1998) 93 [hep-th/9712226].

[22] N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting,

multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220].

[23] X. Bekaert, N. Boulanger and S. Cnockaert, No self-interaction for two-column massless

fields, J. Math. Phys. 46 (2005) 012303 [hep-th/0407102].

[24] X. Bekaert and N. Boulanger, Gauge invariants and Killing tensors in higher-spin gauge

theories, Nucl. Phys. B 722 (2005) 225 [hep-th/0505068].

[25] D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543

(2002) 303 [hep-th/0207002]; On the geometry of higher-spin gauge fields, Class. and Quant.

Grav. 20 (2003) S473 [hep-th/0212185].

[26] D. Francia and A. Sagnotti, Minimal local lagrangians for higher-spin geometry, Phys. Lett.

B 624 (2005) 93 [hep-th/0507144].

[27] A. Pashnev and M. Tsulaia, Description of the higher massless irreducible integer spins in

the BRST approach, Mod. Phys. Lett. A 13 (1998) 1853 [hep-th/9803207].

[28] T. Damour and S. Deser, ’Geometry’ of spin 3 gauge theories, Annales Poincaré Phys.

Théor. 47 (1987) 277.

[29] X. Bekaert and N. Boulanger, On geometric equations and duality for free higher spins, Phys.

Lett. B 561 (2003) 183 [hep-th/0301243]; Mixed symmetry gauge fields in a flat background,

hep-th/0310209.

– 32 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C10%2CL39
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB309%2C39
http://xxx.lanl.gov/abs/hep-th/9705048
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB86%2C161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUCIA%2CA72%2C149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C7%2C1491
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C7%2C1491
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB189%2C89
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB291%2C141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB616%2C106
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB616%2C106
http://xxx.lanl.gov/abs/hep-th/0106200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB655%2C57
http://xxx.lanl.gov/abs/hep-th/0206068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CB988%2C138
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB311%2C123
http://xxx.lanl.gov/abs/hep-th/9304057
http://xxx.lanl.gov/abs/hep-th/9712226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB597%2C127
http://xxx.lanl.gov/abs/hep-th/0007220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C46%2C0123
http://xxx.lanl.gov/abs/hep-th/0407102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB722%2C225
http://xxx.lanl.gov/abs/hep-th/0505068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB543%2C303
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB543%2C303
http://xxx.lanl.gov/abs/hep-th/0207002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2CS473
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2CS473
http://xxx.lanl.gov/abs/hep-th/0212185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB624%2C93
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB624%2C93
http://xxx.lanl.gov/abs/hep-th/0507144
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA13%2C1853
http://xxx.lanl.gov/abs/hep-th/9803207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB561%2C183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB561%2C183
http://xxx.lanl.gov/abs/hep-th/0301243
http://xxx.lanl.gov/abs/hep-th/0310209


J
H
E
P
0
1
(
2
0
0
6
)
0
5
2

[30] M.A. Vasiliev, Extended higher spin superalgebras and their realizations in terms of quantum

operators, Fortschr. Phys. 36 (1988) 33;

S.E. Konshtein and M.A. Vasiliev, Massless representations and admissibility condition for

higher spin superalgebras, Nucl. Phys. B 312 (1989) 402; Extended higher spin superalgebras

and their massless representations, Nucl. Phys. B 331 (1990) 475;

M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP

12 (2004) 046 [hep-th/0404124].

[31] M. Dubois-Violette and M. Henneaux, Generalized cohomology for irreducible tensor fields of

mixed young symmetry type, Lett. Math. Phys. 49 (1999) 245 [math.qa/9907135]; Tensor

fields of mixed young symmetry type and n- complexes, Commun. Math. Phys. 226 (2002)

393 [math.qa/0110088].

[32] M.A. Vasiliev, Gauge form of description of massless fields with arbitrary spin. (In Russian),

Yad. Fiz. 32 (1980) 855.

[33] G. Barnich, F. Brandt and M. Henneaux, Local brst cohomology in the antifield formalism, 1.

General theorems, Commun. Math. Phys. 174 (1995) 57 [hep-th/9405109].

[34] G. Barnich, N. Bouatta and M. Grigoriev, Surface charges and dynamical killing tensors for

higher spin gauge fields in constant curvature spaces, JHEP 10 (2005) 010 [hep-th/0507138].
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