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ABSTRACT: We study the problem of consistent interactions for spin-3 gauge fields in flat
spacetime of arbitrary dimension n > 3. Under the sole assumptions of Poincaré and
parity invariance, local and perturbative deformation of the free theory, we determine all
nontrivial consistent deformations of the abelian gauge algebra and classify the correspond-
ing deformations of the quadratic action, at first order in the deformation parameter. We
prove that all such vertices are cubic, contain a total of either three or five derivatives and
are uniquely characterized by a rank-three constant tensor (an internal algebra structure
constant). The covariant cubic vertex containing three derivatives is the vertex discovered
by Berends, Burgers and van Dam, which however leads to inconsistencies at second order
in the deformation parameter. In dimensions n > 4 and for a completely antisymmet-
ric structure constant tensor, another covariant cubic vertex exists, which contains five

derivatives and passes the consistency test where the previous vertex failed.
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Whereas gauge theories describing free massless fields of arbitrary high spin are by now

well established, it still remains unclear whether nontrivial consistent self-couplings and /or

cross-couplings among those fields may exist at the level of the action, such that the de-

formed gauge algebra is non-abelian. The old Fronsdal programme of introducing consistent

couplings among higher-spin gauge fields [I] is still far away from completion. Actually,



there is a general belief that such interactions are forbidden, except perhaps when the
cosmological constant is nonvanishing, in which case encouraging results have been found
at the level of equations of motion (see e.g. [P, ] and references therein).

The Fronsdal programme was initially investigated in two distinct directions: either
searching for consistent vertices for higher-spin gauge fields interacting with each other
but not with gravity, or attempting to couple consistently some given higher-spin gauge
field with gravity. On the one hand, the problem of consistent interactions among higher-
spin gauge fields in Minkowski spacetime R™ 1! was addressed in [Hf@] where some
positive results have been obtained. In the light-cone gauge, three-point couplings between
completely symmetric' gauge fields with arbitrary spins s > 2, were constructed in [f, [L3,
[[§]. For the pure spin-3 case, a cubic vertex was obtained in a covariant form by Berends,
Burgers and van Dam [§]. These results describe consistent interactions at first order in
a deformation parameter g and involve higher-derivatives. However, no-go results soon
demonstrated the impossibility of extending these interactions to the next orders in powers
of g for the pure spin-3 case [, fl, [[J]. On the other hand, the first explicit attempts
to introduce interactions between higher-spin gauge fields and gravity encountered severe
problems [[7).

Very early, the idea was proposed that a consistent higher-spin gauge theory could exist,
provided all spins are taken into account [[]. In order to overcome the gravitational coupling
problem, it was also suggested to perturb around a curved, conformally flat background,
like for example AdS,,. In such a case, the cosmological constant A can be used to cancel the
positive mass dimensions appearing with the increasingly many derivatives of the vertices.
As the works of Fradkin, Vasiliev and others show, interesting results have indeed been
obtained in those directions, even at the level of the action [L§).

If there is a lesson to learn from decades of efforts toward a consistent theory of
interacting higher-spin gauge fields, it certainly is the unusual character of the possible
interactions. For instance, the cubic vertices contain more than two derivatives.?

This, in turn, can be linked to the fact that the spin-s curvature is expressed via
s derivatives of the gauge field [[9, fl]. Consequently, in order to investigate further the
possible local higher-spin consistent interactions, it is of prime importance to use as general
a tool as possible. A cohomological method is known [R0], which offers all the generality one
could wish and clearly organizes the calculation of the nontrivial consistent couplings. In
this approach, the old Noether method (see for instance [d]) is reformulated in the BRST
framework where consistent couplings define deformations of the solution of the master
equation. This formulation has been used recently in different contexts (see e.g. [R1-RJ
and references therein).

In the present paper, we come back to the initial (and more modest) problem of
consistent interactions among higher-spin gauge fields in flat spacetime and concentrate
on the pure spin-3 case. The motivation behind our work is the existence of the new
method [R(] developed in the meantime, which allows for an exhaustive treatment of the

!Light-cone cubic vertices involving mixed symmetry gauge fields were computed in dimensions n = 5, 6

g

2The full theory presented in [E] is even expected to be non-local.



consistent interaction problem while, in the aforementioned works [{ [, [[3 —[LH], classes of
deformation candidates were rejected ab initio from the analysis for the sake of simplicity.
For example, spin-3 cubic vertices containing more than 3 derivatives were not considered in
the otherwise very general analysis of [f]]. This ansatz was too restrictive since another cubic
vertex with five derivatives exists in dimensions higher than four (it is written explicitly
in Appendix [J). Moreover, without fixing a priori the maximal number of derivatives, we
show that vertices deforming the gauge algebra must contain a total number of either three

or five derivatives.?

The paper is organized as follows. In section ], we review the free theory of massless
spin-3 gauge fields represented by completely symmetric rank-3 tensors. Our principal
hypotheses are spelled out in section B.1 and our main results are collected in Theorems
[l and f presented in section B.3. The section [] gathers together the main BRST results
needed for the exhaustive treatment of the interaction problem: The BRST spectrum
of the theory is presented in section 1. Some cohomological results have already been
obtained in [R4], such as the cohomology H*(7y) of the gauge differential v and the so called
characteristic cohomology H}'(d|d) in antighost number k > 2. We recall the content
of these groups in sections [l.J and [L.J. The calculation of the invariant characteristic
cohomology H}!(d|d, H(7)) constitutes the core of the BRST analysis and is achieved in
section [I.. The self-interaction question is answered in section . We give our conclusions
and discuss several directions for future research in section fg.

2. Free theory

The local action for a collection {hfw p} of N non-interacting completely symmetric massless
spin-3 gauge fields in flat spacetime is [fl]

N
1
Solht,l = / d"x [ 5 Do, 07 hH? +;8“h“ B, heP? +
a=1

pvp pvp npo
> a,horh* 5 0, h*0,hY" — 30,h0,h"PH 2.1
5 ny + Z © v - n'vYp ) ( : )
where hj; := n"?h},,,. The Latin indices are internal indices taking N values. They are

raised and lowered with the Kronecker delta’s 6% and ¢,,. The Greek indices are space-time
indices taking n values, which are lowered (resp. raised) with the “mostly plus” Minkowski
metric 7, (resp. n*).

The action (R.1)) is invariant under the gauge transformations

6)\h = 3(9(ﬂ)\ﬁp) s ,’7/.111)\0, = 0, (22)

a
pvp pw =

3This result is in agreement with the general upper bound k < s1 + s2 + s3 on the total number k of
derivatives in a cubic vertex containing completely symmetric fields of respective spin si, s2 and s3 [B]



where the gauge parameters \j, are symmetric and traceless.* Curved (resp. square)
brackets on spacetime indices denote strength-one complete symmetrization (resp. an-
tisymmetrization) of the indices. The gauge transformations (R.9) are abelian and irre-
ducible.

The field equations read

050
=GP =0, (2.3)
oh,, “
where
3
Gluvp = Flivp = 57 ) (2.4)
is the “Einstein” tensor and £}, , the Fronsdal (or “Ricci”) tensor
ngp = thmp — 3808(ﬂth)0 + 38@3th) . (25)
The Fronsdal tensor is gauge invariant thanks to the tracelessness of the gauge parameters.
Because we have §,So[hj,,] = 0 for the gauge transformations (B.2), the Einstein tensor
G}, satisties the Noether identities
1
oG, — - N0’ Gy =0 (G =n"GY,,) (2.6)

related to the symmetries of the gauge parameters Ajj, ; in other words, the Lh.s. of (2XG))

is symmetric and traceless.

a
pvp
on-shell with N3' independent physical components, where N23' is the dimension of the irre-

The gauge symmetries enable one to get rid of some components of h leaving it

ducible representation of the “little group” O(n —2) (n > 3) corresponding to a completely
symmetric rank 3 traceless tensor in dimension n — 2. One has N3 = %. Of
course, Nél = 2 for the two helicity states +3 in dimension n = 4. Note also that there is
no propagating physical degree of freedom in n = 3 since N?‘? = 0, so that we restrict our
present work to n > 3.

An important object is the curvature (or “Riemann”) tensor [L9, i, Bg]

0, 0,501 (2.7)

Kq o))

aplprivp =8
which is antisymmetric in au, Bv, vp and invariant under gauge transformations (P.9),
where the gauge parameters X, are however not necessarily traceless.

Its importance, apart from gauge invariance with unconstrained gauge parameters,
stems from the fact that the field equations (R-3) are equivalent® to the following equations

naﬁKa

aplpviyp = 0- (2.8)

4Quadratic non-local actions [@] have been proposed in order to get rid of the trace constraint (E)
on the gauge parameter. Since locality is an important hypothesis of the present work, we do not discuss
the non-local formulation here. Notice that by introducing a pure gauge field (sometimes refered to as
“compensator”), it is possible to write a local (but higher-derivative) action for spin-3 [@] that is invariant
under unconstrained gauge transformations. Very recently, this action was generalized to the arbitrary
spin-s case by further adding an auxiliary field [E] (see also [@] for an older “non-minimal” version of it).

®As usual in field theory, we work in a space of smooth functions that vanish at infinity. In particular,
polynomials in z# are forbidden.



This was proved in the work [R9] by combining various former results [2§, B, RJ].

3. Deformations of the free theory

3.1 Basic assumptions

We assume, as in the traditional Noether deformation procedure, that the deformed action
can be expressed as a power series in a coupling constant g, the zeroth-order term in the
expansion describing the free theory Sy :

S:SQ+951+(’)(92).

The procedure is then perturbative: one tries to construct the deformations order by order
in the deformation parameter g.

Some physical requirements naturally come out:

e Poincaré and parity symmetry: We ask that the deformed Lagrangian be invariant
under the Poincaré group. Therefore, it should not depend explicitly on the space-
time cartesian coordinates {#}. The Lagrangian is moreover required to be invariant
under the parity transformation. This implies that all Greek indices have to be
contracted by means of the Minkowski metric only.

e Nontriviality: We reject trivial deformations arising from field-redefinitions that re-
duce to the identity at order ¢ :

¢ — ¢ =0+gp(,00,)+0(g%). (3.1)

e Consistency: A deformation of a theory is called consistent if the deformed theory
possesses the same number of (possibly deformed) independent gauge symmetries,
reducibility identities, etc., as the system we started with. In other words, the number
of physical degrees of freedom is unchanged.

e Locality: The deformed action S[¢] must be a local functional. The deformations of
the gauge transformations, etc., must be local functions, as well as the allowed field
redefinitions.

We remind the reader that a local function of some set of fields ¢ is a smooth function
of the fields ¢ and their derivatives d¢', 8%¢", ... up to some finite order, say k, in the
number of derivatives. Such a set of variables ¢*, d¢’, ..., 9¥¢* will be collectively denoted
by [¢']. Therefore, a local function of ¢ is denoted by f([¢%]). A local p-form (0 < p < n)
is a differential p-form the components of which are local functions:
= l Y dzbt A - A dte
w ol Wy (2, [@']) dHE N NdhP

A local functional is the integral of a local n-form.



3.2 Main results

Theorems [l and [l are presented in this section. They constitute strong yes-go and no-go

theorems that generalize previous works on spin-3 self-interactions.

Theorem 1. Let hy,,, be a collection of spin-3 gauge fields (a=1,...,N) described by the
local and quadratic action of Fronsdal, in dimension n > 3.

At first order in some smooth deformation parameter, the nontrivial consistent local
deformations of the (abelian) gauge algebra that are invariant under parity and Poincaré
transformations, may always be assumed to be closed off-shell and are in one-to-one corre-

spondence with the structure constant tensors
CYabc = _Cacb

of an anticommutative internal algebra, that may be taken as deformation parameters.
Moreover, the most general gauge transformations deforming the gauge algebra at first
order in C = (f,qg) are equal to

a a C a C 1 C
OaheL L, = 30N + b Php + 9 be (xlfpr - Enwﬂ%) +0(C?), (3.2)

up to gauge transformations that either are trivial or do not deform the gauge algebra at
first order, where @chp and \I’ffl,p are bilinear local functions of the gauge field hy,,, and
the traceless gauge parameter \j,,. The expression for ® is lengthy and thus given in the
appendiz A, while

Jvlo,7]

pvp —

1
b _ = 3 b
Lt 317 Ol s

7 )\C}U’T + perms, (3.3)
where a coma denotes a partial derivative® and “perms” stands for the sum of terms ob-
tained via all nontrivial permutations of the indices p,v ,p from the first term of the r.h.s.
The structure constant tensors f%. and g%. are some arbitrary constant tensors that are
antisymmetric in the indices bc. In mass units, the coupling constant f®. has dimension
—n/2 and gj. has dimension —2 —n/2.

Both of these deformations exist in any dimension n > 5. In the case n = 4, the
structure constant tensor g% vanishes.

Firstly, we found a deformation of the gauge symmetries (the one corresponding to the
coefficients ¢g%,.) which had not explicitly been written in previous spin-3 analyzes in flat
space-time. Secondly, without imposing any restriction on the maximal number of deriva-
tives (as was implicit in most former works) we prove that the allowed possibilities are
extremely restricted.

An important question is whether these gauge algebra deformations can be obtained
from an appropriate flat space-time limit of the (A)dS,, higher-spin algebras containing
a finite-dimensional non-Abelian internal subalgebra (studied in details by Vasiliev and
collaborators [BJ]). An indication that this might be the case is provided by the deformation

5For example <I>fa = 0,9



ab
pp:
a[uh’;]y[o . in (B.3) is reminiscent of the second frame-like connection (see e.g. the second

of the gauge transformations eq. (B.9) involving the tensor ¥ The presence of the term

reference of [ff]). They both involve two derivatives of the spin-3 field and have the gi(n)-
|

symmetry corresponding to the Young diagram . More comments in that direction
are given in sections .3 and p.3.

Another important physical question is whether or not these first-order gauge sym-

metry deformations possess some Lagrangian counterpart, i.e. if there exist vertices that
are invariant under (B.2) at first order in C. The following theorem provides a sufficient

condition for that:

Theorem 2. Let the constant tensor Cape = (fabe, Gabe) be completely antisymmetric, where
Cabc = 5adCdbc . Then,

e The quadratic local action (2.1) in dimension n > 3 admits a first-order consistent
deformation

S[thp] = S0 + fabc Sabc + Gabe Tabc + O(CQ), (3.4)

which is gauge invariant under the deformed gauge transformations ) at first order in
the deformation parameters. Furthermore, this antisymmetry condition on the tensor f%.
1s necessary for the existence of the corresponding deformation of the action.

e The vertices in the first-order deformations are determined uniquely by the struc-
ture constants fupe and gape, modulo vertices that do not deform the gauge algebra. The
corresponding local functionals S“bc[hzyp] and T“bc[hﬁyp] are cubic in the gauge field and
respectively contain three and five derivatives. Actually, there are no other nontrivial con-
sistent vertices containing at most three derivatives that deform the gauge transformation
at first order.

e At second order in C, the deformation of the gauge algebra can be assumed to close
off-shell without loss of generality, but it is obstructed if and only if fape # 0.

The first-order covariant cubic deformation Sbca[hﬁl,p] is the Berends-Burgers—van Dam
vertex [f] (reviewed for completeness in Appendix [A]) while the other cubic deformation
Tbca[hﬁy p] is written in Appendix [§. We do not know yet if the antisymmetry condition
on the structure constant gj. is necessary or not for the existence of a consistent vertex at
first order.
It is possible to provide a more intrinsic characterization of the conditions on the
constant tensors. Let A be an anticommutative algebra of dimension N with a basis {75}
Its multiplication law * : A2 — A obeys a xb = —bx* a for any a,b € A, which is
equivalent to the fact that the structure constant tensor C%,. defined by T * T, = C'%,. T,
is antisymmetric in the covariant indices: C%,. = —C?%.,. Moreover, let us assume that the
algebra A is a Euclidean space, 4.e. it is endowed with a scalar product { , ) : A2 — R with
respect to which the basis {T}} is orthonormal, (T, , Ty ) = d4. For an anticommutative
algebra, the scalar product is said to be invariant (under the left or right multiplication) if
and only if (a*b, ¢) = (a, bxc) for any a,b,c € A, and the latter property is equivalent
to the complete antisymmetry of the trilinear form

C: A —=R:(a,b,c)— Cla,bc) = (a, bxc)



or, in components, to the complete antisymmetry property of the covariant tensor Cyp. :=
dad Cdbc-

The gauge algebra inferred from the Berends-Burgers-van Dam vertex is inconsistent
at second order [, ] and no corresponding quartic interaction can be constructed [[L(].
Originally, consistency of the Berends—Burgers—van Dam deformation at second order was
shown to require that f decf ‘a=1f daef “be B], which means that the corresponding internal
algebra is associative (a *b) xc = a * (b*c). In section f.2.9, we actually obtain a stronger
condition from consistency: f%..f¢m = 0, i.e. the internal algebra is nilpotent of order
three: (a*b)*c = 0. In any case, to derive that the Berends-Burgers—van Dam vertex is
inconsistent at order two, one may use the following well-known lemma

Lemma 1. If an anticommutative algebra endowed with an invariant scalar product is
associative, then the product of any two elements is zero (in other words, the algebra is
nilpotent of order two).

Proof: Under the hypotheses of Lemma [, one gets (a b, b*a) = (a,bx* (b*a)) =
(a, (bxb)*a)=0 which implies a * b = 0 for any a,b € A. O

An exciting result is that the second deformation corresponding to gabe = gjang Passes
the gauge algebra consistency requirement where the vertex of Berends, Burgers and van
Dam fails. Unfortunately, we do not know if there exist second order gauge transformations
that are consistent at this order.

The proofs of Theorems [I] and f] are given in section [ They rely on a BRST cohomo-
logical reformulation presented in the next section.

4. BRST settings

4.1 BRST spectrum and differential

According to the general rules of the BRST-antifield formalism, a grassmann-odd ghost C7j,,
is introduced, which accompanies each grassmann-even gauge parameter Ajj,,. In particular,
it possesses the same algebraic symmetries as Ajj,: it is symmetric and traceless in its
spacetime indices. Then, to each field and ghost of the spectrum, a corresponding antifield
(or antighost) is added, with the same algebraic symmetries but the opposite Grassmann
parity. A Z-grading called ghost number (gh) is associated with the BRST differential s,
while the antighost number (antigh) of the antifield Z* associated with the field (or ghost)
Z is given by antigh(Z*) = gh(Z) + 1. More precisely, in the theory under consideration,
the spectrum of fields (including ghosts) and antifields together with their respective ghost
and antighost numbers is given by

the fields hf,,,, with ghost number 0 and antighost number 0;

the ghosts C,,, with ghost number 1 and antighost number 0;

the antifields hy""”?, with ghost number —1 and antighost number 1;

the antifields C3"”, with ghost number —2 and antighost number 2.



Z | puregh(Z) | antigh(Z) | gh(Z) | parity (mod 2)
ne, 0 0 0 0
ce, 1 0 1 1
ha""? 0 1 -1 1
Ca"” 0 2 —2 0

Table 1: Pureghost number, antighost number, ghost number and parity of the (anti)fields.

The BRST differential s of the free theory (R.1), (R.9) is generated by the functional
Wy = So[h®] + /d”m (3hg!"* 0,Cp,) -
More precisely, Wy is the generator of the BRST differential s of the free theory through
sA = (Wo, A)as. ,

where the antibracket (, ),p. is defined by

sfAstB  §RAGB

A B = — . 4.1
( ’ )a.b. Pl 5@? 5@; FY ( )

The functional Wy is a solution of the master equation
(Wo, Wo)ab. = 0. (4.2)

In the theory at hand, the BRST-differential s decomposes into s = v + §. The first
piece 7y, the differential along the gauge orbits, is associated with another grading called
pureghost number (puregh) and increases it by one unit, whereas the Koszul-Tate differen-
tial & decreases the antighost (or antifield) number by one unit. The differential s increases
the ghost number by one unit. Furthermore, the ghost, antighost and pureghost gradings
are not independent. We have the relation

gh = puregh — antigh . (4.3)

The pureghost number, antighost number, ghost number and grassmannian parity of
the various fields are displayed in table [i.

The action of the differentials § and ~ gives zero on all the fields of the formalism
except in the few following cases:

ShEP = GV,
* LV Pm 1 v *
o = =3 (Mﬂ e Mﬁ) ,

iy = 39,00 -



4.2 BRST deformation

As shown in [(], the Noether procedure can be reformulated within a BRST-cohomological
framework. Any consistent deformation of the gauge theory corresponds to a solution

W =Wy + gW1 + ¢*Wa + O(g?)

of the deformed master equation (W, W),; = 0. Consequently, the first-order nontrivial
consistent local deformations Wy = [ a™Y are in one-to-one correspondence with elements
of the cohomology H™?(s|d) of the zeroth order BRST differential s = (Wj, ) modulo the
total derivative d, in maximum form-degree n and in ghost number 0. That is, one must
compute the general solution of the cocycle condition

sa™ Y +ap" bl =0, (4.5)

0

where a™ Y is a top-form of ghost number zero and "~ %! a (n — 1)-form of ghost number

one, with the understanding that two solutions of ([.§) that differ by a trivial solution
should be identified

an,O ~ an,O + Spn,—l + dqn—l,O

as they define the same interactions up to field redefinitions (B.1). The cocycles and
coboundaries a, b, p, q, ... are local forms of the field variables (including ghosts and anti-

fields).
The corresponding second-order interactions Ws must satisfy the consistency condition

1
sWo = —§(W17 Wi)as. -
This condition is controlled by the local BRST cohomology group H™!(s|d).

4.3 Cohomology of ~

In the context of local free theories in Minkowski space for massless spin-s gauge fields
represented by completely symmetric (and double traceless when s > 3) rank s tensors,
the groups H*(7) have recently been calculated [R4]. Accordingly, we only recall the latter
results in the special case s = 3 and introduce some new notations.

Proposition 1. The cohomology of v is isomorphic to the space of functions depending on
e the antifields hy!""?, Ca* and their derivatives, denoted by [®*],

e the curvature and its derivatives [KZM\ BVWP] ,

o the symmetrized derivatives 3(a1 v Oy, F 51//)) of the Fronsdal tensor,
e the ghosts C}, and the traceless parts of O[QCZ]V and 8[GCZ} L

,10,



Thus, identifying with zero any y-exact term in H(7y), we have
vf=0

if and only if

5= 1 (197 K ool s s T U
where {F;}Vp} stands for the completely symmetrized derivatives (9(a1 ...8%F§Vp) of the

Fronsdal tensor, while Ta | denotes the traceless part of T* . := 0, C% and Ue the
oplv aplv [ p] ol By

= 0, O -

This proposition provides the possibility of writing down the most general gauge-

v

traceless part of Ugu\ v

invariant interaction terms. Such higher-derivative Born-Infeld-like Lagrangians were al-
ready considered in Ref. [[J. These deformations are consistent to all orders but they do
not deform the gauge transformations (R.g). Also notice that any function of the Fronsdal
tensor or its derivatives corresponds to a field redefinition.

Let {w’} be a basis of the space of polynomials in the Chv

these variables anticommute, this space is finite-dimensional). If a local form a is y-closed,

T¢  and U® since
aply Uaulﬁv (

we have
1a=0 = a= (@)K, {FNw (Chn T Oos) 470, (46)

If a has a fixed, finite ghost number, then a can only contain a finite number of antifields.
Moreover, since the local form a possesses a finite number of derivatives, we find that
the o are polynomials. Such a polynomial a;([®"], [K],{F}) will be called an invariant

polynomial.

Remark 1: Because of the Damour-Deser identity

77o{ﬁKtwlﬂvl“/p =20 Fpuw

the derivatives of the Fronsdal tensor are not all independent of the curvature tensor
K. This is why, in Proposition [l the completely symmetrized derivatives of F' appear,
together with all the derivatives of the curvature K. However, from now on, we will
assume that every time the trace no‘ﬁquﬁyhp appears, we substitute 20, F),,, for it.
With this convention, we can write o ;([®"*], [K], [F]) instead of the unconvenient notation

ay([@7], [K],{F}).

Remark 2: It is possible to make a link with the variables occurring in the frame-like
first-order formulation of free massless spin-3 fields in Minkowski space-time [B]. In this
context, the spin-3 field is represented off-shell by a frame-like object €4, symmetric
and traceless in the internal indices (a,b). The spin-3 connection wpjq,q, 15 traceless in
the internal Latin indices, symmetric in (a1,a2) and obeys w,|pja1ay) = 0. The gauge
transformations are de,jqp = Ouéab + Vpjabs OWppplaras = Oubjaras + Sufblaras, Where the
parameter &, is symmetric and traceless in (a,b), the generalized Lorentz parameter Qplab
is completely traceless, symmetric in (a,b) and satisfies the identity A(ylab) = 0, so that it

— 11 —



alb] pinally,

belongs to the o(n — 1, 1)-irreducible module labeled by the Young tableau m

the parameter ¥, .. transforms in the o(n — 1,1) irreducible representation associated
with the Young tableau 2 fL , in the manifestly symmetric convention. By choosing the

generalized Lorentz parameter appropriately, it is possible to work in the gauge where the

frame-field e,|qp is completely symmetric, €4y = €(yjap) = huap- Then, it is still possible

#l
to perform a gauge transformation with parameters o, ., and g, provided the traceless

component of Jj,&,, be equal to —ay,|qp- The traceless component of 9,&,, is nothing
but the variable T}, in the BRST conventions. Furthermore, in the 1.5 formalism where

the connection is still present in the action, but viewed as a function of e consistency

wularazs
with the “symmetric gauge” ejq; = €(yjab) = huap implies that the traceless component of

the second derivative a[agbﬂc,u} be entirely determined by X, p/4.. The traceless component

~

of 01q&p)[c,y) 1s the variable U,

Vol
convention, as opposed to the choice made in [BZ]). The variables {vafualﬁv ﬁaﬁlw} €

lyu in the BRST language. The relations T),4|5 <— jap and

& X jpjac are now manifest (note that we work in the manifestly antisymmetric

H(v) in the ghost sector are in one-to-one correspondence with the gauge parameters
{&uws Qpjab, Zpjpjac) of the first-order formalism [BJ)].

4.4 Invariant Poincaré lemma

We shall need several standard results on the cohomology of d in the space of invariant
polynomials.

Proposition 2. In form degree less than n and in antifield number strictly greater than 0,
the cohomology of d is trivial in the space of invariant polynomials. That is to say, if a is
an invariant polynomial, the equation do = 0 with antigh(a) > 0 implies o = df where (3
s also an invariant polynomial.

The latter property is rather generic for gauge theories (see e.g. Ref. [RJ] for a proof), as
well as the following:

Proposition 3. If a has strictly positive antifield number, then the equation vya + db =0
is equivalent, up to trivial redefinitions, to ya = 0. More precisely, one can always add
d-exact terms to a and get a cocycle a’ := a + dc of ~y, such that ya’' = 0.

Proof: Along the lines of Ref. 23], we consider the descent associated with ya + db = 0:
from this equation, one infers, by using the properties 42 = 0, vd+dv = 0 and the triviality
of the cohomology of d, that vb + dc = 0 for some c¢. Going on in the same way, we build

a “descent”
vya+db =0
Yo+ dec =0
yc+de =0,
(4.7)
ym +dn = 0,
yn = 0.
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in which each successive equation has one less unit of form-degree. The descent ends with
vn = 0 either because n is a zero-form, or because one stops earlier with a «-closed term.
Now, because n is y-closed, one has, up to trivial, irrelevant terms, n = ayw’. Inserting

this into the previous equation in the descent yields
d(ey)w? + agdw’ +ym = 0. (4.8)

In order to analyse this equation, we introduce a new differential.

Definition (differential D): The action of the differential D on hf,,, hd™?, Cz* and
all their derivatives is the same as the action of the total derivative d, but its action on the

ghosts is given by :

4 R
DCy, = 5 de T

ulv)
nalp = 92 Upol o5
D(0p,..p,Cu) =0 if t>2. (4.9)
The above definitions follow from
a 1 a 4 a
aOéC,ul/ = g(’yha,uu) + gTa(MV),
1
DT alp = D) V(Oahuigp) + Unalps »
1
pUnalvs = gW(a[uha}p[ﬁvv})' (4.10)

The operator D thus coincides with d up to y-exact terms.
It follows from the definitions that Dw” = A7 ;w! for some constant matrix A”; that
involves dz* only. One can rewrite ([L.§) as
d(ey)w” + ayDw? +ym’ =0 (4.11)

=(daj+arAl j)w’

which implies,
d(ay)w’ + ayDw’ =0 (4.12)

since a term of the form Bjw’ (with 3; invariant) is y-exact if and only if it is zero. It is

also convenient to introduce a new grading.

Definition (D-degree): The number of famy

’s plus two times the number of ﬁamﬁ,,’s is
called the D-degree. It is bounded because there is a finite number of T,

~

ulv’s and Uqy6,°s,
which are anticommuting. The operator D splits as the sum of an operator D; that raises
the D-degree by one unit, and an operator Dy that leaves it unchanged. Dy has the same
action as d on hy,,, h**°, C**8 and all their derivatives, and gives 0 when acting on the
ghosts. D; gives 0 when acting on all the variables but the ghosts on which it reproduces
the action of D.

Let us expand ([.§) according to the D-degree. At lowest order, we get

dovg, =0 (4.13)
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where Jg labels the w” that contain no derivative of the ghosts (Dw’ = Djw” contains at
least one derivative). This equation implies, according to Proposition B}, that oy, = dfy,
where 3, is an invariant polynomial. Accordingly, one can write

agw’ = d(Bs,w’) F B, Dw’® + ~-exact terms. (4.14)

The term [3;,Dw”’ has D-degree equal to 1. Thus, by adding trivial terms to the last
term n(= ayw’) in the descent (J£7), we can assume that it does not contain any term of
D-degree 0. One can then successively remove the terms of D-degree 1, D-degree 2, etc,
until one gets n = 0. One then repeats the argument for m and the previous terms in the
descent (JL7) until one gets b = 0, i.e., ya = 0, as requested. ]

4.5 Cohomology of 6 modulo d: H}'(d|d)

In this section, we review the local Koszul-Tate cohomology groups in top form-degree and
antighost numbers k > 2. The group H{(5|d) describes the infinitely many conserved
currents and will not be studied here.

Let us first recall a general theorem (Theorem 9.1 in [BJ]).
Proposition 4. For a linear gauge theory of reducibility order r,
Hy(0]d) =0 forp>r+2.

Since the theory at hand has no reducibility, we are left with the computation of
HY (0| d). The cohomology H% (4| d) is given by the following theorem.

Proposition 5. A complete set of representatives of HY(0|d) is given by the antifields
CaM", up to explicitly x-dependent terms. In detail,

Sa +dbv ' =0, — ay = L8, (x)Ca" d"x + 6b% + dby ™"
al ~ al + ¢y + dey ! Ly, (x) = \j, + A5, 2P + By, aPar.

The constant tensor X, is symmetric and traceless in the indices pv, and so are the

a a

constant tensors Afw‘p and B Moreover, the tensors Afw‘p and B transform in

wl|po” wv|po
. . . plv] Qv

the irreducible representations of GL(n,R) labeled by the Young tableaux D and olo]
meaning that IR

a _Aa a _

mvlp = Avu\p’ (mvlp) = 0,

a _ a _ pa a _

wlpo Bvulpv — Puvlop B(W\p)a =0. (4.15)
Together with the tracelessness constraints on the constant tensors Afw‘p and Bzu\pm the
Gl(n,R) irreducibility conditions written here above imply that the tensors A Afw‘p and
Bﬁy|pa respectively transform in the irreducible representations of O(n —1,1) labeled by the
Young tableauz [H]V], 'Z Y] and 'Z Z .

The proof of Proposition | in the general spin-s case has been given in Ref. 4] (see
also [B4]). The spin-3 case under consideration was already written in Ref. [BF].
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4.6 Invariant cohomology of § modulo d: H;"""" (8| d)

We have studied above the cohomology of § modulo d in the space of arbitary local functions

of the fields Ay, ,, the antifields ®*', and their derivatives. One can also study HJ'(8|d) in

the space of invariant polynomials in these variables, which involve h¢

pp
only through the curvature K, the Fronsdal tensor F', and their derivatives (as well as the

and its derivatives

antifields and their derivatives). The above theorems remain unchanged in this space, i.e.
H;""™"(8]d) = 0 for k > 2. This very nontrivial property is crucial for the computation of
H"™%(s|d) and is a consequence of

Theorem 3. Assume that the invariant polynomial az (p = form-degree, k = antifield
number) is §-trivial modulo d,

—1
ap =0y q +duy, (k> 2). (4.16)
Then, one can always choose ,uz 41 and ng to be invariant.

To prove the theorem, we need the following lemma, a proof of which can be found

e.g. in [29].

Lemma 2. If a is an invariant polynomial that is 6-exact, a = db, then, a is §-exact in
the space of invariant polynomials. That is, one can take b to be also invariant.

The next two subsections are devoted to the proof of Theorem [,

4.6.1 Propagation of the invariance in form degree

We first derive a chain of equations with the same structure as (f.16) [Bd]. Acting with d

on (L.16), we get dai = —5d,u£ 41+ Using the lemma and the fact that dag is invariant, we
can also write daz = —5(1%11 with aiii invariant. Substituting this into daz = —5d,ug+1,
we get § {ai]: —dyk, +1] = 0. As H() is trivial in antifield number > 0, this yields
+1 +1
apiq = Oup o +dug (4.17)

which has the same structure as () We can then repeat the same operations, until we
reach form-degree n,

az-l—n—p = 5#Z+n—p+1 + dﬂz;yll_p (418)

Similarly, one can go down in form-degree. Acting with ¢ on ([.1G), one gets da} =
—d(éui_l). If the antifield number k& — 1 of da} is greater than or equal to one (i.e.,
k > 1), one can rewrite, thanks to Proposition f, éa} = —daij where aij is invariant.
(If & = 1 we cannot go down and the bottom of the chain is (f.16) with & = 1, namely
a? = 6pb + dpP ') Consequently d {aij - 5ui_1] = 0 and, as before, we deduce another
equation similar to ({4.16)) :

al =0l duk (4.19)
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Applying § on this equation the descent continues. This descent stops at form degree zero
or antifield number one, whichever is reached first, i.e.,

either a%,p = 5u2,p+1
or alfkarl = 5,ugfk+1 + d,uzl’fk. (4.20)

Putting all these observations together we can write the entire descent as

n—1

n _ s,.n
Aftn—p = 5lu’k+n—p+1 + d'u’k-‘rn—p

p+l o pil p
Ay = Oty o+ dpy g

-1
aj, = Optipy + dpy

—1 —1 —2
ap_y = Opy  +dup_

. 0 0
either ap_,, = opp_piq
or b Ftt = bR 4 qph (4.21)

where all the aiié are invariants.

Let us show that when one of the p’s in the chain is invariant, we can actually choose
all the other p’s in such a way that they share this property. In other words, the invariance
property propagates up and down in the ladder. Let us thus assume that ,ugfl is invariant.
This ,ugfl appears in two equations of the descent :

ag = 5Mg+1 + dug_la
al~l = opsTt 4 dps? (4.22)

(if we are at the bottom or at the top, ug_l occurs in only one equation, and one should

just proceed from that one). The first equation tells us that duf, is invariant. Thanks to
Lemma | we can choose My to be invariant. Looking at the second equation, we see that
d,ug:f is invariant and by virtue of Proposition [, ,ug:% can be chosen to be invariant since
the antifield number b is positive. These two u’s appear each one in two different equations
of the chain, where we can apply the same reasoning. The invariance property propagates
then to all the p’s. Consequently, it is enough to prove the theorem in form degree n.

4.6.2 Top form degree

Two cases may be distinguished depending on whether the antifield number k is greater
than n or not.

In the first case, one can prove the following lemma:

Lemma 3. If a is of antifield number k > n, then the “u”s in ([[.14) can be taken to be

nvariant.
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Proof for k£ > n : If k > n, the last equation of the descent is agfn = 6;127”“. We can,
using Lemma [, choose ,ugfnﬂ invariant, and so, all the p’s can be chosen to have the

same property. [

It remains therefore to prove Theorem [J in the case where the antifield number satisfies

k < n. Rewriting the top equation (i.e. (4.16) with p = n) in dual notation, we have

ap = 0bgy1 + apj,ﬁ, (kﬁ = 2). (4.23)

We will work by induction on the antifield number, showing that if the property expressed
in Theorem [ is true for k£ + 1 (with k > 1), then it is true for k. As we already know that
it is true in the case k > n, the theorem will be proved.

Inductive proof for k£ < n : The proof follows the lines of Ref. [Bf| and decomposes in
two parts. First, all Euler-Lagrange derivatives of ([£23) are computed. Second, the Euler-
Lagrange (E.L.) derivative of an invariant quantity is also invariant. This property is used
to express the E.L. derivatives of ai in terms of invariants only. Third, the homotopy
formula is used to reconstruct aj from its E.L. derivatives. This almost ends the proof.

(i) Let us take the E.L. derivatives of ([.2J). Since the E.L. derivatives with respect

to the C commute with J, we get first :
L ay,
5C

=622, (4.24)

L
with Z;:f L= %gﬁ“. For the E.L. derivatives of by with respect to h},, , we obtain, after
B

a direct computation,
5L aj

Nwp

— X" 4 39 2P (4.25)

L
where X" = %hbf* L. Finally, let us compute the E.L. derivatives of a, with respect to
nvp

the fields. We get :

5L ag
5Py

= SY0 + GMPP X o (4.26)

L
where Y/V7 = ééhb'“t; and GHPleA7(9) is the second-order self-adjoint differential operator
v

appearing in the equations of motion (2.3):
GHve — guwlaﬁw oy -

The hermiticity of G implies grvelaBy — gabyluvp,
(ii) The E.L. derivatives of an invariant object are invariant. Thus, gé—‘i’; is invariant.
Therefore, by Lemmag and eq. (), we have also
5Lak
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for some invariant Z,;a_ﬁl Indeed, let us write the decomposition Z,?f 1= Z,Ifiﬁl +Z§f 1» Where
Z,‘:f ; is obtained from Z,‘:f | by setting to zero all the terms that belong only to H(y). The
latter operation clearly commutes with taking the & of something, so that eq. ({.24) gives
0= 52,?‘? | which, by the acyclicity of ¢, yields Z,‘:f | = 502‘6 where agﬁ can be chosen to
be traceless. Substituting 602{6 + Z,/fiﬁl for Z;:fl in eq. (f24) gives eq. (f27).

Similarly, one easily verifies that

Ohar _ _sxmwn | 3o zme) 4
S = 0% +30Wz") (4.28)

where X" = X,gwp + 38(“02’)) + 5,02‘_7_’1. Finally, using GH? .3, 9@gB7) . = 0 due to the
gauge invariance of the equations of motion (0,5 has been taken traceless), we find

5Lak — 5y e wop 103y
m — Yk+1 +g aﬁ,yX k (429)

for the invariants X, and Yéi"lp . Before ending the argument by making use of the

homotopy formula, it is necessary to know more about the invariant Yk/ilip .

Since aj is invariant, it depends on the fields only through the curvature K, the
Fronsdal tensor and their derivatives. (We remind the reader of our convention of section
.3 to substitute 20, F ), for naﬁKaM Bulvp everywhere.) We then express the Fronsdal
tensor in terms of the Einstein tensor @) Frvp = Guup — %n(upr), so that we can write

a, = ap([®*], [K],[G]) , where [G] denotes the Einstein tensor and its derivatives. We can

thus write
" ay pvp rafy rop| Bl yp
sh =g agvA P 80,8/3(97]\/[ k (4.30)
wp
where 5
A/gﬁv x ag
0Gapy
and 5
M/OMBVWP x ak
k
5Kau|6va

are both invariant and respectively have the same symmetry properties as the “Einstein”
and “Riemann” tensors.

Combining eq. ([29) with eq. (1.30) gives

5Yk/iqp = 30{(9/36“/]\/[,2#‘&‘%) + gwpaﬁwBlgm (4.31)

with B'®%7 .= A/®P7_ X'*%7 Now, only the first term on the right-hand-side of eq. (f31) is
divergence-free, 0,,(0agy M ’Z“ |Bvie ) = 0, not the second one which instead obeys a relation
analogous to the Noether identities (R.6). As a result, we have & [8M(Y/Ziq - %n”pY'f:H)] =

0, where Y} | =n,,Y"/"/ . By Lemma f], we deduce

17 1 12
0 (Y~ 2wy )+ oF =0, (132
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where F'}", is invariant and can be chosen symmetric and traceless. Eq. ([.32) determines
a cocycle of H,’:;ll (d|6), for given v and p. Using the general isomorphisms H,’:;ll (d]o) =
Hp ,(6]d) =0 (k>1) [BJ gives

1

11 p wo_ aplvp uvp

Y k+1 - ET]VPY k+1 — aa’Tk+1 + 5Pk+2 9 (433)
where both T; f‘lyp and P,i’;g are invariant by the induction hypothesis. Moreover, Tka f‘lyp
is antisymmetric in its first two indices. The tensors T} f‘lyp and P75 are both symmetric-

traceless in (v, p). This results easily from taking the trace of eq. ([.33) with Nyp and using

the general isomorphisms HZ;f(d\é) = H,:‘;; (d]d) = Hp, 4(6]d) = 0 [B]] which hold since

k is positive. From eq. ([:33) we obtain

1 1
Y = 80 [T + mn“ﬂT,ﬂﬂ +0 [P,gjg Pl | (4.34)

where Tka J_‘i = anT,?:‘lp  and P! 4o = Nup Py, jfg . Since Y,;’flp is symmetric in p and v, we have

also Jy [Tka_[ﬁ‘y]p + %Tﬂ_{fny]ﬂ + 5[P,£W]p + ﬁnP[VPIﬂ_Q] = 0. The triviality of H}!,,(d|d)

n +2
(k > 0) implies again that (P[W}p + ﬁnp[”P“] ) and (Tawy]p + %T:H“ vIP) are trivial,

k+2 k+2 k+1 n—1tk+1"
in particular,
1
e 4 Tl = 985 (4:35)

where S,fi‘l“ VP i antisymmetric in (5, «) and (i, v). Moreover, it is traceless in p, v, p as the

left hand side of the above equation shows. The induction assumption allows us to choose

S,fﬂw/'p and Qg_’tgp invariant. We now project both sides of eq. ({.35) on the symmetries

of the Weyl tensor. For example, denoting by W,ﬂ_“l”‘ap the projection Wl’j ,Z,g,z ,S,filllu vl
of S,fﬂw/'p, we have
e i g o
e 0. e

As a consequence of the symmetries of T; f‘lyp , the projection of eq. (:3]) on the symmetries

of the Weyl tensor gives
0= JW 1 4 5(...) (4.36)

where we do not write the (invariant) d-exact terms explicitly because they play no role
in what follows. eq. ([.36) determines, for given (i, v, a, p), a cocycle of H™ 1(d|5, H(%)).

k+1
Using again the isomorphisms [B3] Hg;ll(dlé) = H}' »(0]d) =0 (k > 1) and the induction
hypothesis, we find
wlkler = g groller s (4.37)

where qﬁ;ﬁf vler i invariant, antisymmetric in (v, 3) and possesses the symmetries of the
Weyl tensor in its last four indices. The d-exact term is invariant as well. Then, projecting
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the invariant tensor 4¢Zi‘f vlap

B\ uv|ap
k+1

algebra (which takes no time using Ricci [B7])

on the symmetries of the curvature tensor KY8#ler and

calling the result ¥ which is of course invariant, we find after some rather lengthy

Y/ = 00030, WRH P 4 G10 , KOOy 0. (4.38)
with

Y . 2 oTp H 1 pv wov
Xagalk+1 = —— anm< =S oprlpkrr T or S ok TS g k+1]> (4.39)

where yggg = y((ggf/ )) projects on completely symmetric rank-3 tensors.

(iii) We can now complete the argument. The homotopy formula

1
ak::][ dt
0

enables one to reconstruct ay from its E.L. derivatives. Inserting the expressions ([.27)-
(B.29) for these E.L. derivatives, we get

5Lak 5Lak

o g a0y
aB 0Cks SNy, M Oy,

] (th, th* , tC*) (4.40)

1
@ = /0 0t (O30 21, + By X170 By VE1(0) ) + 0,0 (4.41)

The first two terms in the argument of § are manifestly invariant. To prove that the
third term can be assumed to be invariant in eq. (f.41]) without loss of generality, we use

eq. (E:39) to find that
Poasp ch/iylp - _‘I’ZflﬁyhpKaulﬁva + Gaﬁv)?amkﬂ +9ptP +6(...),

where we integrated by part thrice to get the first term of the r.h.s. while the hermiticity
of GHvPloBY was used to obtain the second term.

We are left with ap = dpga1 +3p1/,§ , where pij1 1 is invariant. That 1/,’; can now be chosen
invariant is straightforward. Acting with v on the last equation yields d,(yv}) = 0. By
the Poincaré lemma, yv! = 80(T]£p 0]). Furthermore, Proposition f| on H(vy|d) for positive
antighost number k implies that one can redefine v{ by the addition of trivial d-exact
terms such that one can assume ")/I/;; = 0. As the pureghost number of y,g vanishes, the
last equation implies that 1/,’; is an invariant polynomial. ]

5. Computation of deformations

As explained in section B.1, nontrivial consistent interactions are in one-to-one correspon-
dance with elements of H™%(s|d), i.e. solutions a of the equation

sa+db=0, (5.1)
with form-degree n and ghost number zero, modulo the equivalence relation

a~a+sp+dg.
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Quite generally, one can expand a according to the antifield number, as
a=ag+a+as+---ag, (5.2)

where a; has antifield number 7. The expansion stops at some finite value of the antifield
number by locality, as was proved in [Bg].

Let us recall [21] the meaning of the various components of a in this expansion. The
antifield-independent piece ag is the deformation of the Lagrangian; aq, which is linear in
the antifields h*#*P  contains the information about the deformation of the gauge symme-
tries, given by the coefficients of h**¥?; a5 contains the information about the deformation
of the gauge algebra (the term C*CC gives the deformation of the structure functions ap-
pearing in the commutator of two gauge transformations, while the term A*h*C'C gives the
on-shell closure terms); and the aj (k > 2) give the informations about the deformation of
the higher order structure functions and the reducibility conditions.

In fact, using the previous cohomological theorems and standard reasonings (see e.g.
[B2]), one can remove all components of a with antifield number greater than 2. The key
point is that the invariant characteristic cohomology Hg’mv(é |d) controls the obstructions
to the removal of the term aj, from a and that all H}""*"(5|d) vanish for k > 2 by Proposition
[ and Theorem f|. This proves the first part of the following theorem:

Theorem 4. Let a be a local top form which is a nontrivial solution of the equation (B.1).
Without loss of generality, one can assume that the decomposition ([5.3) stops at antighost
number two, i.e.

a=ayp+a+as. (5.3)

If the last term as is parity and Poincaré invariant, then it can always be written as
the sum of

3
a% = [ CgM <T3aﬁTzfa|6 o 2T3a\ﬁTfﬁ\a + 92 cref ﬁaluﬁ> d"z (5.4)

and
a2 = 9% G UpagprUsalon 4"+ (5.5)

where f%. and g%, are some arbitrary constant tensors that are antisymmetric under the
exchange of b and c. Notice that a% vanishes when n = 4.

This most general parity and Poincaré invariant expression for as is computed in section
B

Let us note that the two components of as do not contain the same number of deriva-
tives: a3 and a3 contain respectively two and four derivatives. This implies that a2 and
a3 lead to Lagrangian vertices with resp. three and five derivatives. The first kind of
deformation (three derivatives) was studied in [}, however the case with five derivatives
has never explicitly been considered before in flat space-time analyzes.
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Similarly to (5.9), one can assume b = by + b; . Inserting the expansions of a and b into

(1) and decomposing s as s = § + v yields

yag + day + dbg =0, (56)
yai + das +dby =0, (5.7)
yaz =0. (5.8)

The general solution of (B.§) is given by Proposition [ The computation of ay follows from
the results obtained in sections f.4H4.4, applied to the equation (5.7).

Another consequence of the different number of derivatives in a3 and a3 is that the
descents associated with both terms can be studied separately. Indeed, the operators
appearing in the descent equations (f.6)-(F.§) are all homogeneous with respect to the
number of derivatives, which means that one can split a into eigenfunctions of the operator
counting the number of derivatives and solve the equations separately for each of them. In
the sequel we thus split the analysis: the descent starting from a3 is analysed in section

F-3, while the descent associated with a3 is treated in section [5.3.

5.1 Most general term in antighost number two

The equation (b.§) implies that, modulo trivial terms, as = ayw!, where ay is an invariant

~

polynomial and the {w’} provide a basis of the polynomials in Couvs ﬁwp, Uppo (see section

1

[.3). Let us stress that, as as has ghost number zero and antifield number two, w! must

have ghost number two.

Acting with v on (f.7) and using the triviality of d, one gets that b; should also be
an element of H(v), i.e., modulo trivial terms, by = Brw!, where the 8; are invariant
polynomials.

Let us further expand as and b; according to the D-degree defined in the proof of
Proposition ] in section [f4 :

M M M M
CL2:ZQ%:ZCM}iwIi, bl:ZbZIZZﬁliwli’
i=0 i=0 i=0 i=0
where ab, b and w!i have D-degree i. The equation (5.7) then reads
Z 6[aliwli] + Z D[ﬁliwli] = 7(' : ) )
i i
or equivalently

3 oot + 3 Dol + Y Al et =),
where Aﬁﬂwhﬂ = Dwi, which implies

dlot] + DolBr) + Br,_, A7~ =0 (5.9)
for each D-degree i, as the elements of the set {w’} are linearly independent nontrivial
elements of H (7).

D-degree decomposition:
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e degree zero : In D-degree 0, the last equation reads d[ay,| + Do[B1,] = 0, which
implies that aj, belongs to H2(d|d). In antifield number 2, this group has nontrivial
elements given by Proposition [, which are proportional to C3"” . The requirement of
translation-invariance restricts the coefficient of Cia to be constant. Indeed, it can
be shown [BY that if the Lagrangian deformation ag is invariant under translations,
then so are the other components of a. On the other hand, in D-degree 0 and ghost
number 2, we have w’® = CZpCﬁo To get a parity and Lorentz-invariant aJ, w/o must
be completed by multiplication with Cg"" and some parity-invariant and covariantly
constant tensor, i.e. a product of 7,,’s. The only a9 that can be thus built is
ay = C* VCb CYf fiLd"z, where f£ is some constant tensor that parametrizes the

deformatlon From this expression, one computes that b = Bj,wl = —3 (ha"* —
=1 ‘“’hZO‘)CZp CUP i % (dzg) , where x(dzq) = (n_1)!5au1...un—1dwm odatnet,

e degree one : We now analyse eq. (5.9) in D-degree 1, which reads
Slar,] + Do[Br,] + B, AL = 0. (5.10)

The last term can be read off 610A§‘;w11 o< (hg!"® — L pie fo dra Tb(Mp)Cﬁp, and
should be d-exact modulo Dy for a solution of (5.10) to exist. However, the coef-
ficient of T°

a(plp)
z-independent functions, as both § and Dy bring in one derivative while the coefhi-

Cy’ is not J-exact modulo Dy. This is easily seen in the space of

cient contains none. As fj, is allowed to depend explicitely on x*, the argument is
actually slightly more complicated: one must expand (37, according to the number
of derivatives of the fields in order to reach the conclusion. The detailed argument
can be found in the proof of Theorem 7.3 in Ref. [Bg. As ﬂIOAﬁ’ is not d-exact
modulo Dy, it must vanish if (5.10) is to be satisfied. This implies that f{ vanishes,
so that aJ = 0 and bY = 0. One thus gets that ay, is an element of Hy(5|d). However,
there is no way to complete it in a Poincaré-invariant way because the only w' is

11 _ Tb

wvlp
an even number of them. Thus a = 0 = b1.

C¢, which has an odd number of Lorentz indices, while ay, oc CiM has

e degree two : The equation (5.9) in D-degree 2 is then 6[ayz,] + Do[Br,] = 0, which
implies that ay, belongs to Ha(d|d). One finds, most generally when n > 3, that

2 vkuv b TcalB ra b Tl c
Ay = C ® (T C“|6T | f[bc] + T Cv|5TI/ Blox [ d + C U a|lxﬁkbc)d s
1
2 BNy V1, %p c a c
b = =3 (" — 0P ) T Tia sl + ThaipTipiadhe + C*Upaguahse) *
*(dxp) ,

where f[%cp gilbc} and kj, are three a priori independent constant tensors.
e degree three : Now, in the equation for a3, we have
BIQ AIQWIS

2 a *p Tepo a 1 a n
zke) — h iy alps TP (flg + 390ba)| 4",

Wt Upaps Ty O (Fig + g — 3
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which implies, when n > 3, that g[bc] = -2 f[bc and k. = 5 f[bc since the coefficients

Tﬂ 8 are not d-exact modulo Dg . All this proves equa-
tion (f.4), which is the expression a3 found here modulo trivial terms. Provided that
the above conditions are satisfied, « I; must be in Hy(d|d). But no Poincaré-invariant

a% can be built because w’ = T3a| BU 5p\m has an odd number of Lorentz indices, so
a3 = 0.

e degree four : Repeating the same arguments for a3, one gets a3 = g%.Ca""”
Uba\ﬁA U5 qng and bt = =3 (ha!"? — Wh*p)Ub ol6A caw)‘gg * (dx,) , for some

constant structure function gj... It is 1mportant to notlce that a3 vanishes in dimen-

sion n = 4 because of the Schouten identity 0 = C};¥* gb  vewsgre  vavsgli o gnsl
o3| paps| [v1 vs)

c*y ba‘ ﬁ/\(A]m| B - No condition is imposed on g, by equations in higher D-degree
because D1b} = 0. This proves equation (5.3).

e degree > 4 : Finally, there are no a for i > 4 because there is no ghost combination
w!i of ghost number two and D-degree higher than four.

Summarizing, we have proved the second part of Theorem

5.2 Berends—Burgers—van Dam’s deformation

In this section, we consider the deformation related to a3 given by (5.4). As explained above,
as = a3 must now be completed into a solution a of sa + db = 0 by adding terms with
lower antifield number. The complete solution a provides then the first-order deformation
term W1 = [ a of an interacting theory. The next step is to check that higher order terms
Wy, W3, ete. can be built to get the full interacting theory.

In the case considered here, we show that a first-order interaction term W; can be
constructed; however, there is an obstruction to the existence of Ws, which prevents its

completion into a consistent interacting theory.

5.2.1 Existence of a first-order deformation

In this section, the descent equations (f.6) and (5.7), i.e. yag + day + dby = 0 and va; +
das + dby = 0, are solved for a7 and ayg.
The latter of these equations admits the particular solution

3 *UU 1 Vok T c b c ba c
Mn=-3 [(hau Ul hap)<23[uhamp( uam = 2T0510) T hagpUajns —3C Ba[vhﬁ]ﬂ[a,u})

PR (0,17 — e — 0hew)| fi .

To this particular solution, one must add the general solution a; of va; + db; = 0, or
equivalently (by Proposition fJ) of va; = 0. In ghost number zero, antifield number one
and with two derivatives, this solution is, modulo trivial §-, 7- and d-exact terms,

xa b uv e po *a b e uv *a b cv
= W0, GO OOy WG OO WG, OO,
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where l(lab)c, l%ab)c and lzbc are some arbitrary constants. For future convenience, we also
add to azl’ + ap the trivial term ~b; where

3
b1 = fihiou, (— ShMT O WG — 20T Oy b+ 3h 0 B —Bhg O h7 +2hg O hWﬂ) +

*Q vV, C 17 g 1,C g 1,C 1 cVpo cuy
+ fabc 5 (2RP O, B — PP OB, + BhPHO7hG — §hb OMhPT - 6hLD,hHP) .

vpo

In short, up to trivial terms, the most general a;, solution of va; + das + dby = 0, is
aq :a’f—i-dl + by .

The next step is to find ag such that vag + da; + dbg = 0. A cumbersome but straight-
forward computation shows that necessary (and, as we will see, sufficient) conditions for a
solution ag to exist are (i) f[‘gc} is totally antisymmetric, or more precisely dqq f[céc] = flabe)»
(i1) {{apye = Uap)e = 0 and (iii) I

Che = —% Jabe] - This computation follows the lines of an argu-

ment developped in [2J], which considers the most general ag and matches the coefficients
of the terms with the structure Ch’h’/, where h’ denotes the trace of h. In four dimensions,
one must take into account that some of these terms are related by Schouten identities;
however, this does not change the conclusions. Once the conditions (i) to (iii) are satisfied,
one can explicitly build the solution ag, which corresponds to the spin-3 vertex found in
in which the structure function f,;. has been replaced by —% fabe - The deformation ag of
the Lagrangian can be found in the appendix [f. It is unique up to solutions ag of the
homogeneous equation yag + dbg = 0.

We have thus proved by a new method that the spin-3 vertex of [ff] is the only consistent
nontrivial first-order deformation of the free spin-3 theory with at most” three derivatives in
the Lagrangian, modulo deformations ag of the latter that are gauge-invariant up to a total
derivative, i.e. such that yag + dby = 0. However, as is known from [f], this deformation
cannot be completed to all orders, as is proved again in the next section.

5.2.2 Obstruction for the second-order deformation

In the previous section, we have constructed a first-order deformation Wy = f (ap+ai+az)
of the free functional Wy . As explained in section [L.9, a consistent second-order deformation
Wy must satisfy the condition

(Wi, W1)ap, = —25Ws. (5.11)

Expanding (W7, W1)4.. according to the antifield number, one finds

(Wi, Wi)ap. = /d"w (o + a1 + a2),

where the term of antifield number two «s comes from the antibracket of ay with itself.
If one also expands Wy according to the antifield number, one gets from (f.11) the
following condition on ay (it is easy to see that the expansion of W5 can be assumed to

"The developments above prove the three-derivatives case. For less derivatives, it follows from above
that a2 = 0, which implies that ya1 = 0 by (E), however there is no such parity and Poincar-invariant
nontrivial a; with less than two derivatives, so a1 = 0 as well.
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stop at antifield number three, Wy = f d"z(co+ c1 + co2 + ¢3) and that c3 may be assumed
to be invariant, ycz = 0)
as = —2(yeg + des) + 9,bh (5.12)

Explicitly,

1 * b, TdvplofT b, Tdvplo T b, Td  jreov
a2 = §fabc cde Mg (_4T MOJWT p‘UngpWo + 5T MOJWT p|0U§U|Bp 3T Ma‘ﬁTap\oUea Ipﬁ

~ ~ ~ ~ ~ ~ 3~ ~ ~
bua|Bd epv|o buc|Bd eovlp _ 2 7rbualvBod e plo
+TeOT T, + TP T e, — SOMeIT T

ShualvBpd e olp gAb,uah/,B dpojre § b 71rdpuloaite v|B
A I N i I R T AR
3 b 7d e u 3 vbaBiid  Frepulov
= CapU MU0, 4 2 OO gUPT) ().

It is impossible to get an expression with three ghosts, one C* and no fields, by acting with
d on c3, so we can assume without loss of generality that cg vanishes, which implies that
ag should be y—exact modulo total derivatives.

However, a9 is not a mod-d y-coboundary unless it vanishes. Indeed, suppose we have

ag = y(u) + Okt .

Both u and k* have antifield number two and we can restrict ourselves to their components
linear in C* without loss of generality (so that the gauge algebra closes off-shell at second
order). We can also assume that u contains C* undifferentiated, since derivatives can be
removed through integration by parts. As the Euler derivative of a divergence is zero, we
can reformulate the question as to whether the following identity holds,

§tag 6 (yu) —’y( otu )
6Cye 6Cre oc

since vC* = 0 and C* appears undifferentiated in u. On the other hand, géi‘g is a sum of
%

nontrivial elements of H(7); it can be y-exact only if it vanishes. Consequently, a necessary
condition for the closure of the gauge transformations (c2 may be assumed to be linear in
the antifields) is as = 0.

Finally, o vanishes if and only if fap.f€, = 0 (nilpotency of the algebra) or n = 3,
which implies when n > 3 the vanishing of fu. (by Lemma [l}), and thus of the whole
deformation candidate.

Let us note that originally, in the work [J], the obstruction to this first-order deforma-
tion appeared under the weaker form f,, f%. = f,4.f% (@ssociativity) and was obtained
by demanding the closure of the algebra of gauge transformations at second order in the

deformation parameter.

5.3 Five-derivative deformation

We now consider the deformation related to as = aj, written in equation (F-§). In this
case, the general solution a; of ya; + das + dby = 0 is, modulo trivial terms,

UV 1 V1 *x cx a mn =
al = —2 (ha'u P ET]“ hap)a[uhgz}p[ﬁ,A}Uu |6)\g[bc] d"x +az s (513)
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where a is an arbitrary element of H(7y) .

When the structure constant is completely antisymmetric in its indices, a Lagrangian
deformation ag such that yag + da; + dbg = 0 can be computed. However, its expression is
quite long and is therefore to be found in the appendix [B. We used the symbolic manipu-
lation program FORM [A(] for its computation. This nontrivial first-order deformation of
the free theory had not been found in the previous spin-three analyzes in Minkowski space-
time, which is related to the assumption usually made that the Lagrangian deformation
should contain at most three derivatives, while it contains five of them in this case.

However, it would be very interesting to see whether the cubic vertex written in Ap-
pendix [B could be related to the flat space limit of the higher-spin vertices of the second
reference of ] At first order in the deformation parameter, it might be possible to take
some flat space-time and free limit of the (A)dS,, higher-spin cubic vertices. A very appro-
priate free limit must indeed be taken: the dimensionless coupling constant g of the full
higher-spin gauge theory should go to zero in a way which compensates the non-analyticity
~ 1/A™ in the cosmological constant A of the cubic vertices, i.e. such that the ratio g/A™
is finite. The spin-3 vertices could then be recovered in such appropriate limits from the
action of 1] by substituting the linearized spin-3 field strengths for the nonlinear ones at
quadratic order and replacing the auxiliary and extra connections by their expressions in
terms of the spin-3 gauge field obtained by solving the linearized torsion-like constraints, as
explained in [E, A, E] (and references therein). Such a relation would provide a geometric
meaning for the complicated expression of Appendix [B.

The next step is to find the second order components of the deformation. Similarly
to the previous case, it can easily be checked that we can assume c3 = 0. However, no
obstruction arises from the constraint ay = (ag,a2) = —2ycy + O, k. If this candidate for
an interacting theory is obstructed, the obstructions should arise at some later stage, i.e.
beyond the (possibly on-shell) closure of the gauge transformations.

For completeness, one should check if yag + da; + dby = 0 admits a solution ag when
the structure constant gdbc = gd[bc} is not completely antisymmetric but has the “hook”
symmetry property § d[agdbc] = 0. However, the computations involved are very cumbersome
and we were not able to reach any conclusion about the existence of such an ag.

6. Conclusions and perspectives

In this paper we carefully analyzed the problem of introducing consistent interactions
among a countable collection of spin-3 gauge fields in flat space-time of arbitrary dimension
n > 3. For this purpose we used the powerful BRST cohomological deformation techniques
in order to be as exhaustive as possible. Under the sole assumptions of locality, parity
invariance, Poincaré invariance and perturbative deformation of the free theory, we proved
that only two classes of non-abelian gauge symmetries are consistent at first order. They
close off-shell and are entirely characterized by the structure constants of some internal
anticommutative algebra (as for Yang-Mills’s theories). When these constant tensors are
completely antisymmetric (this is possible only for a set of different massless spin-3 fields),
there exist actions that are invariant at first order under the non-Abelian gauge symmetries.
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The first deformation corresponds to the well-known Berends—Burgers—van Dam cubic
vertex which involves three derivatives of the fields and becomes inconsistent at second
order. The second deformation is defined for n > 4 and corresponds to a cubic vertex
that involves five derivatives. There are some indications that this deformation could be
obtained from an appropriate flat-space limit of the nonlinear (A)dS,, higher-spin gauge
theory of Ref. [].

The antisymmetry condition gape = g[ape) On the structure constant of the second defor-
mation is only sufficient for the existence of the vertex. It would be interesting to establish
whether a constant tensor g“[bc] with the “hook” symmetries 5d[agdbc] = 0 might not also
give rise to a consistent first-order vertex. If this first-order non-abelian deformation turned
out to exist, then there would be no other one, under the assumptions stated above. The
relaxation of the parity symmetry requirement and the special case n = 3 also deserve
more study [i7.

Moreover, it would be of prime importance to investigate whether the second first-order
consistent deformation could be extended to higher orders in the deformation parameter.
At second order, a first test has been passed where the Berends—Burgers—van Dam vertex
fails, but unfortunately the lengthy nature of the five-derivative cubic vertex makes further
analysis very tedious.

Last but not least, it would be of interest to enlarge the set of fields to spin 2, 3
and 4 and see if this allows to remove the previous obstruction at order two. A hint that
this might be sufficient comes from the fact that the commutator of two spin-3 generators
produces spin-2 and spin-4 generators for the bosonic higher-spin algebra of Ref. [B].
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In this appendix, we provide the lagrangian deformations ag for the first-order interac-
tions found in section I, as well as the first-order deformation of the gauge transformations
for the Berends-Burgers-van Dam vertex.

A. Three-derivative vertex

The deformation

3
b berpd b
/ao = f[abc] S®es 8 C[huup] = g /[’C]_L%]_%vD d"x
related to the element a2 of section .9 is the Berends-Burgers—van Dam cubic vertex
aoc 3 acx c ax c ac s C 1 ax C
EBbBuD = _5 h hbﬁﬁh@oﬁ +3h ﬂhbvhmaﬁ +6h B’Y'ghghﬁ,vé + 5 h hbﬂpﬂishﬁvé, ae
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9 1
a ba c,v6 a ,¥6ybo c a bBycy, o a bs, c,a
+3 haﬁ’y,(5h Bahs v + Shaﬁ'y v h ﬁgh&& — —4 ha,ﬁ’yh ﬁh 2 — —4 ha,ﬁh B ’Yh’y

, 3 , , 3
a bs,apc B a ,apbs, c ,4 apb c Bv,ad a,af1by,d1c
=Bl B RS T — SRR RG, o0  BRERY B P04 S IRk

3 b . §
+3hG, ghl sh0 — S hghig 5 ThE 00 — G R O ehg

+6 h® aaéhbﬁhgg Y€ _ 9 ho 5hl;\ a578hg B,y +he hgs/\70¢hc deX, By

afy apfy, aBy
_3 hg‘ﬁ’y, ahg B, Ehg)\(?, A +3 hiﬁ'y’ aéhbﬁwe, )\hg(;,\ +6 hgﬁm 5hbaﬁ8, )\hg/\(?, o ,

where we remind that indices after a coma denote partial derivatives.
The first-order deformation of the gauge transformations is given by

lra _ ra be
5Ahuup = [be q);u/pa

where ®% is the completely symmetric component of

prp
15
Oivp = OB Ny = BB TN o+ By NG = 6 NG, T =l AT
31 boT 9 b oT 11 b o,
+Zhu Aﬁo,m + Zhuvmm)‘c - Ehw )‘i(w)

3 9 9
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1 b T,0 13 bot b
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3 3
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3 1
b )R AT RN KT Lt
9 1 oT T,No oT
+§(1 o E)(_hzaﬂ',nnxz + 2hl;)<7 i )\ZT B hl;” Afﬂ')) '

This expression is equivalent to that of [} modulo field redefinitions.

B. Five-derivative vertex

In this appendix, we give the deformation ag related to the element a3 of section 5.3 with
completely antisymmetric structure constants. It satisfies the equation vag+ day + dbg = 0
for a; defined by (5.13), in which @; = 0. The deformation is

1
/ao = g[abc} Tabe ; Tabc[hzup] = 5 /ﬁabc d"z

where

‘Cabc =
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